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ABSTRACT

Hierarchical Age-Period-Cohort (HAPC) Cross-ClassifFixed Effects Models (CCFEM) and Random
Effects Models (CCREM) have been increasingly usedocial scientists to investigate temporal
variation in numerous outcomes across ages, timedse and birth cohorts. The models have received
recent scrutiny and testing, with some researdatarsoning that HAPC models estimate (1) biased and
(2) inconsistent age, period, and cohort effedt&sE previous findings, however, were based on a
misrepresentation of the HAPC modeling framewortt aere derived from exercises that applied HAPC
models to unrealistic simulated data. In this &tiwe discuss the scope and application of HAPCatsod
and test the validity and consistency of HAPC eatés of age-, period-, and cohort-based variation i
outcomes using simulated data. We replicate previiodings and show that that existing criticisris o
HAPCs apply to rare, select circumstances, withptieeious poor performance of HAPC models
stemming from (1) misapplication of the models @nynrealistic simulated data. Findings from
simulated data in this paper show that fited HAPCREMs and HAPC-CCFEMs estimate the “true”
age, period, and cohort effects in simulated d&tennapplied to (1) Age-Period-Cohort data structime
which cohort membership is not a function of oragje and period, or (2) data in which the functional
forms of age effects, period effects, and cohdeot$ on the outcome are not assumed to be linear.
Further, we show that distributions of the ageiqaerand cohort effects estimated from Markov chain
Monte Carlo simulations using Gibbs sampling fa HAPC-CCREM are also consistent with “true”
effects in both individual-level data and aggregate data.

We thank the Robert Wood Johnson Foundation’s Headtl Society Scholars Program for its financial
support.



Our paper will proceed across several analytiegst

Step 1: We replicate the data, methods, and findings feopaper “The Cross-Classified Age-Period-
Cohort Model as a Constrained Estimator” preseat&013 PAA Annual Meeting Session 24,
Innovative Theory and Methods for Demographic Retedy Liying Luo and James Hodges. The
authors concluded that the HAPC fitted to threeutated datasets produced biased and inconsistent
results. We show that these authors made twoargitors in their analytic design: (1) the “trusje,
period, and cohort effects selected by the auttr@ate data that bury temporal variation by assgrain
linear functional form for all three temporal dins@ans. As such, these authors applied HAPC models t
data that did not exhibit any temporal-based viamathereby assuring the models’ failures to deday
period or cohort effects. This is shown in Tabltk (‘true” effects from three simulated datasetsted
by the authors), Table 2 (the observed age-spamificomes across time periods as functions of the
“true” effects), and Figure 1 (graphical plots létobserved outcomes) below.

Table 1. Replication of Luo's "True" Age, PerioddaCohort Effects.

Dataset Age Period Cohort
ol o2 a3 £l £2 53 yl y2 73 y4 75
NO. 1 -1 0 1 -1 0 L -1.5 -1.5 0 0 15
NO. 2 -1 0 ] -1 0 L -3 1.5 0 15 3
NO. 3 -1 0 ] -1 0 L 2 1 0 -1 -2
Table 2. '"True" Observed Outcomes from the Combifiege" Age, Period, and Cohort Effects.
Dataset NO. 1 NO. 2z NO. ¢
pl p2 p3 p1 p2 p3 p1 p2 p3
al -2 -1 1.5 -2 -1 1.5 -2 -2 -2
a2 -2.5 0 1 -2.5 0 i 0 0 0
a3 -1.5 -0.5 2 -1.5 -0.5 D 2 2 2

Figure 1. “True” Observed Outcomes from the Comthifierue” Age, Period, and Cohort Effects.
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Dataset 1 Observations exhibit variation in Age Bedod, and Cohort (i.e., Age-specific outcomey va
across Period).

Dataset 2 Observations exhibit variation in Age Bedod only (i.e., parallel Age effects).

Dataset 3 Observations exhibit variation in Ageydnk., Age effects are uniform across time).

As seen in Figure 1, only in Dataset NO. 1 dotakké temporal dimensions exhibit some variatiotién
outcome. The age-specific outcomes in Dataset N@rRacross period in a uniform/parallel manner,
and thus only exhibit period-based temporal variatNo cohort variation is detectable. Finally, Huge-
specific outcomes in Dataset NO. 3 are exactlysttree across time periods and birth cohorts. Thus, i



this case there is neither cohort variation noiggevariation in the outcome. Had Luo and Hodges
estimated model fit statistics for Datasets NO. 2 they would have seen that an age-period modlel (i
the case of Dataset No. 2) or an age-only modeh@rcase of Dataset NO. 3) would have been pesferr
to an APC model. Indeed, the need to perform miiidelsts before applying APC models is a point
stressed by multiple APC researchers (Yang and Raig).

The second critical error committed by Luo and Hesdgras to frame the application of HAPC-CCREMSs
as only occurring to data from tabular rates ofspecific data across time periods, wherein colsort
produced as a direct relationship from period-agelort. Data of this structure suffer the ideatifion
problem in which the values of age, period, ancbcodire absolutely dependent on each other. However
the authors did not highlight the fact that mukipéal-life applications of the HAPC-CCREM modeling
framework have been applied to individual-leveledaherein respondents self-report their year ahbir
(such as the National Health Interview Survey) thieo data structures in which the year of respotsien
births are known (such as knowing the birth yeamothers in the National Vital Statistics Birth Batin
these cases, cohort groupings can be created fr@setf-reported year of birth rather than beimtirect
linear outcome from period-age in tabular data.

In short, multiple instances show that the HAPC-EB&Rhave been applied to data structures that do not
reflect the C=P-A identification problem, yet LuncHodges present the HAPC-CCREM as performing
well only under the circumstances in which a redeer must constrain the effects of neighboring csho

to be equal. This is not the case.

Taken together, we show that Luo and Hodges mieseptt the application of HAPC-CCREMSs and
misapply the models themselves to data that shmtltbe analyzed with an APC framework.

Step 2: We next discuss the assumptions behind the lideaendency of C = P-A, and the appropriate
application of HAPC models.

Here, for example, is the classic C = P-A idendiiicn problem stemming from tabulated Age-specific
outcome across Periods. In these data we do net Kuhort, so we must assign it as a linear funatibn
Period-Age:

Linear Assumption / Tabular Data Example of TabOlata
Sl S2 53 1990 1991 1992
a3 yl y2 73 52 1938 1939 1940
a2 y2 »3 y4 51 1939 1940 1941
al y3 y4 y5 50 1940 1941 1942

Assumes five C = P-A

Age, Period, and Cohort obtained from individualdledata in which survey respondents self-repair th
birth year, however, do not suffer from the lindapendency behind the identification problem.



Table. 3. Age, Period, and Cohort from Individeaddl Data

p1 p2 p3
o3 0 yl yl y2 y2 y3
y0 1 y1 y2 2 /3
o2 y1 y2 y2 y3 73 4
1 y2 y2 73 73 4
ol y2 y3 73 y4 v4 )
y2 73 73 4 4 75

Uses Individual-level Self-reported Birth Year te@te C£ P-A

Just as in a classic Lexis diagram, every persperinces a calendar year at two different agess,Th
when birth cohort is self-reported in individual## data we can observe respondents from a givieorto
at one age across two periods. In the design alfmvimstance, persons in birth cohg2texperience age
a2 during the time period&l andp2. When we have individual-level information on histear the APC
data can be scaled up, such that, for example aweel;, 5, andy, to all be five years wide, 10 years
wide, or to be various widths. To illustrate, hare actual data from the National Health Interview
Survey, waves 1986-2004, linked to mortality resaatithe National Death Index through December 31,
2006. Because we have survey respondents’ salfteepf age, birth year, and enumerator-reported
survey year, we can freely create Age, Period,Gottbrt groupings that need not be direct, linear
functions of one another. In the case below we rvlksive year cohorts age across five year periods
terms of five year age intervals.

Age-Period-Cohort Design from Individual-level Datathe National-Health Interview Survey, 1990-
2005.

5yr X 5yr X 5yr Age-Period-Cohort Design for 50-®ar Old Age Groug
Period 2, [1990-199 Period 3, [1995-200 Period 4, [2000-200

1926 1927 1928 1929 1960 1931 1932 1933 1934 1935 1936
Cohort 1, [1925-1930) 1930 1931 1932 1933 1934 1935 1p36 1937
Age 3, [60-65 1928 1929 1930 1931 1982 1933 1934 1935 1936 1937 1938

1937 8 193193

1929 Cohort 2, [1930-1935) 1935 1936 1937 8 19

1930 1931 1932 1933 1984 1935 1936 1937

1931 1932 1933 1934 Cohort 3, [1935-1940)

1932 1933 1934 1935 1986 1937 1938 1941945

Age 2, [55-60 1933 1934 1935 1936 B7 1938 1945 1946
1934 1935 1936 1937 B8 1944 1945 6 1941947
1935 1936 1937 1944 1945 1946 7 1941948
1936 1937 Cohort 5,{1986)

1937 1945 1946 1947 1948 9 1941950 1951
1946 1947 1948 1949 0 1951951 195p

1946 1947 1948 1949 I6E50-1955)
1947 1948 1949 1950 1951 2 1951953 195¢

Age 1, [50-55

The lesson as it applies to the current exercgstss: the design of the APC data depends on our
assumptions about the source. Are the data indildldwel (or contain some other way by which we
know birth year such that cohorts do not need tlirgarly produced from period-age), or are they
tabulated rate data that suffer from the linearedéeency of period-age=cohort? Luo’s and Hodges’s
paper and presentation assumed only the latter.



Example of Individual-level Data

1990 1991 1992
52 1937 1938 1938 1989 1939 1i40
1937 1938 1938 1939 1939 1940
51 1938 193p 1939 1940 1940 1941
D
D

1938 1934 1939 1940 1940 1941
50 1939 194 1940 1041 1941 1942
1939 1940 1940 1941 1941 1942
Uses Individual-level Self-reported Birth Year tce@te C£ P-A

Example of Individual-level Data Assuming Linearg@adence

1990 1991 1992
52 1938 1938 1939 1989 1940 1i40
1938 1938 1939 1939 1940 1940
51 1939 193p 1940 1940 1941 1941
D
D
)

1939 1934 1940 1940 1941 1941
50 1940 194 1941 1941 1942 1942
1940 194 1941 1941 1942 1942
Uses Age at time Period to Assign Cohort

Step 3: We next introduce two different data designs #aath addresses the two separate errors in Luo’s
and Hodges exercises: (1) introduce data as thibugdre obtained at the individual-level, and thas a
sixth cohort, with two cohorts for every age x pdrtell; and (2) assume non-linear functional fafm

cohort’s effecton Y.

Here, we introduce a sixth cohort to the origimake datasets, assuming the data to be indivieéwval-I
and, thus, following the structure depicted in Eabl

Table 4. "True" Age, Period, and Cohort Effects fiomiividual-level Data

Dataset Age Period Cohort

al 02 a3 pl p2 53 y1l y2 y3 y4 y5 y6
NO. 1 -1 0 ] -1 0 il -1.5 -1.5 0 0 15 2
NO. 2 -1 0 ] -1 0 il -3 -1.5 0 15 3 *45
NO. 3 -1 0 ] -1 0 L 2 1 0 -1 -2 *-3

* Continue to assume linear functional form

Next, we then create three alternative datasets fnao’s and Hodges'’s original data sets that assume
non-linear effects of cohort on Y:



Table 5. "True" Age, Period, and Cohort Effect®ata with Non-linear Functional Form for Cohort

Dataset Age Period Cohort

ol a2 a3 Sl 52 53 yl y2 73 4 75
NO. 1’ -1 0 ] -1 0 1 -1.5 -1.5 0 0 *1.5
NO. 2' -1 0 ] -1 0 | -3 -0.5 0 0.5 3
NO. 3 -1 0 ] -1 0 | 1 0.9 0.25 -0.25 -0.1

* Dataset NO. 1 already assumed a non-linear famaitform of cohort, so no changes were made

Figure 2. “True” Cohort Effects, Original Data frohable 2 and Non-linear Data from Table 5.
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3.0 4 3.0 3.0 4
2.0 2.0 2.0 4
1.0 1 1.0 1.0 4
> 0.0 > 0.0 >0.0 4
-1.0 1 -1.0 -1.0 4
-2.0 4 -2.0 -2.0 4
-3.0 -3.0 X -3.0
711 73 74 75 71 7?2 ”3 74 75 7 72 73 74 7
Cohort Cohort Cohort

Figure 3. “True” Observed Outcomes from the Comthifierue” Age, Period, and Cohort Effects in

Table 5.
Dataset 1 —pl ——f2 —a—p3 New Dataset 2 =~ ——p1 —*=f2 —=—43 New Dataset 3 ~ ——p1 —%—f2 —=—p3

3.0 3.0 4 3.0

201 201 \/- 20

1.0 1 "\/ 10- 1.0 1 /
> 0.0 > 0.0 / >0.0 1

1.0 */K\x -1.0 | 1.0 1

2.0 1 \/ 2.0 | /\ 2.0

3.0 3.0 3.0

a1 a2 a3 al a2 a3 al a2 a3
Age Age Age

Dataset 1 Observations exhibit variation in Age Bedod, and Cohort (i.e., Age varies across Pgriod
Dataset 2 Observations exhibit variation in Age Bedod, and Cohort (i.e., Age varies across Pgriod
Dataset 3 Observations exhibit variation in Age Bedod, and Cohort (i.e., Age varies across Pgriod



Step 4 — Fit HAPC-CCFEM and HAPC-CCREM on data from Tabl® Replicate Luo’s & Hodges's

findings:

Table 6. Simulation Results: CCFEM and CCREM eg#@sdor the three datasets in Table 1.

Dataset NO. 1 Dataset NO. 2 Dataset NO. 3

Assigned CCFEM CCREM Assigned CCFEM CCREM Assigned CCFEM REN
1 -1 -1.00 -1.00 -1 0.47 0.48 -1 -2.03 -2.02
Age 4 0 -0.01 -0.01L 0 -0.01 0.p1 0 -0.01 0.01
3 1 1.01 1.0} 1 -0.45 -0.48 1 2.05 2.02
1 -1 -0.97 -0.9p -1 -2.44 -2.48 -1 0.06 0.00
Period 1 0 0.00 -0.42 0 0.00 -0J01 0 0.00 0.00
3 1 1.03 1.0} 1 2.50 2.50 1 0.00 0.00
1 -1.5 -1.49 -1.4y -3 -0.06 0.00 2 -0.06 0.00
2 -1.5 -1.49 -1.4y -1.5 -0.02 0.po 1 -0.02 0.00
Cohort 0 0.00 0.2 0 0.00 0.00 0 0.00 0.00
4 0 0.00 0.0p 15 0.03 0.00 -1 0.03 0.00
5 1.5 1.44 1.4 3 0.00 0.00 -2 0.00 0.00

Note: CCFEM and CCREM models in Dataset NO.1 cairstid Cohort 1=2 and Cohort 3=4.

These results are the same as those presentedtgnduiHodges. They show the inability of the HAPC-
CCFEM and HAPC-CCREM to estimate the “true” APCeef from Table 1.

Step 5: Refit HAPC-CCFEM and HAPC-CCREM on data from Tea8l individual-level data containing
3 Age, 3 Period, and 6 Cohort Effects.

Table 7. Simulation Results: CCFEM and CCREM egasdor the three datasets in Table 4.

Dataset NO. 1* Dataset NO. 2 Dataset NO. 3
Assigned CCFEM CCREM Assigned CCFEM CCRHBEM Assigned CCFEM REN
1 -1 -1.00 -1.00 -1 -1.00 -0.97 -1 -0.97 -0.97
Age 4 0 *-0.04 *0.06 0 -0.02 0.7p 0 0.04 -0.51
3 1 1.00 1.00 1 1.00 1.00 1 1.01 1.01
1 -1 -0.99 -0.99 -1 -0.98 -1.04 -1 -1.07 -1.03
Period 1 0 0.00 0.qo 0 0.00 0J01 0 0.00 0.03
3 1 1.00 1.00 1 0.98 1.03 1 0.97 1.00
1 -1.5 -1.53 -1.6B8 -3 -2.98 -3.p1 2 2.09 2.60
2 -1.5 -1.50 -1.6p -1.5 -1.46 -2.p4 1 0.97 1.48
Cohort 0 0.00 -0.90 0 0.00 -0J73 0 0.00 0.51
4 0 0.02 -0.0 1.5 1.53 0.5 -1 -1.03 -0.51
5 1.5 1.57 1.4 3 3.07 2.17 -2 -2.04 -1.52
6 2 2.02 1.9 4.5 4.53 3.66 -3 -3.08 -2.56

*Cohorts 1 and 2, and Cohorts 3 and 4 were nottained to be equal in Dataset NO. 1
** Age 2 "Effect" in the CCFEM and CCREM Colums ar®del intercepts



In all datasets, the HAPC-CCFEMs and HAPC-CCREMsigately and consistently estimate the “true”
effects in all three datasets. All estimated caeddfits are nonsignificantly different from the treféects.
Thus, when applied to individual-level Age-Periodhort data, the HAPC method is both valid and
reliable, and need not apply any constraints o\ Period, or Cohort terms. The primary mistake
Luo and Hodges made was in trying to inappropreapply the HAPC method to tabulated data in
which C=P-A and in which no temporal variation véasectable.

Next, we fit HAPC-CCREM using Markov Chain Monter@asimulations using Gibbs sampling on
tabulated rate data in which C=P-A, but in which é&ffect of C is not assumed to be linear. Thatés
fit MCMC HAPC-CCREMs on data in Table 5.

Step 6: Fit MCMC HAPC-CCREM on data from Table 5:groupdédata containing 3 Age, 3 Period,
and 5 Cohort Effects in which C=P-A. Also, we tiéste can replicate estimates from CCFEMs and
CCREMs on data from Table 4 using MCMC HAPC-CCREM.

Table 8. Simulation Results: MCMC estimates forttivee datasets in Table 4 and Table 5.

Dataset NO. 1* Dataset NO. 2 Dataset NO. 3
Table 4 MCMC Table MCME Table4 MCMC Table5 MCNC Table MCMC Table5 MCMC
1 -1 -0.99 -1 -0.9b -1 -0.99 -1 -0.p4 -1 -1.00 -1 -1.08
Age 7 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
3 1 1.00 1 0.97 1 1.00 1 0.56 1 1.01 1 1.03
1 -1 -0.99 -1 *-1.03 - -0.99 -1 -1.33 -1 -0.98 -1 -0.95
Period 3 0 0.00 0 0.¢0 0 0.00 0 0]00 0 0.00 0 0.00
3 1 0.98 1 1.0B 1 0.98 1 1.89 1 0.98 1 0.92
1 -1.5 -1.47 -1.5 -1.40 -3 -2.98 -3 -2{28 2 2.02 1 0.60
2] -1.5 -1.45 -1.5 -1.44 -15 -1.45 -1 -0{63 1 1.04 .9 0.59
Cohort 0 0.00 0 0.qo 0 0.00 0 0{00 0 0.00 .25 0.00
4 0 0.03 0 -0.0p 15 1.53 5 014 -1 -0.97 -.25 -0.43
5 15 1.57 15 1.34 3 3.07 3 222 -2 -1.92 -1 -0.18
6) 2 2.03 4 4.53 -3 -2.96

*Cohorts 1 and 2, and Cohorts 3 and 4 were nottined to be equal in Dataset NO. 1
** Period and Cohort Coefficients Centered on P& @8

First, the MCMC HAPC-CCREMSs accurately and consigyeestimate the “true” A, P, and C effects in
the individual-level data. Furthermore, the poistiraates are more accurate than those estimattatby
HAPC-CCREM in Table 7.

Second, even for tabular data in which C=P-A idmatiion problem hinders model convergence for the
HAPC-CCFEM and HAPC-CCREM, the MCMC HAPC-CCREM pgsites A, P, and C effects that are
consistent with the “true” effects.

Step 7: Finally, we fit MCMC HAPC-CCREMSs to data simuldt&éom empirically estimated APC
effects from both individual-level data and frorbuéated rate data. That is, we use the HAPC-CCREM
modeling framework to determine if these modelsredrieve the estimated APC effects in data
simulated from (1) results presented by Powers32@ibking at variation in US infant mortality ratey
mother’s age, mother’s birth cohort, and year ahbiand (2) results estimated from APC modelsaisin
the intrinsic estimator (IE) to estimate age-, @é+j and cohort-based variation in non-Hispaniclbla
men’s mortality from infectious diseases betwee®01&nd 2009. In the first case, cohort is self-regub



by the mother and thus the APC data structuregsiife example of the data structure depicted in
Table 4. In the second case, five year age-spetsfith rates among US black men are tabulatedsacros
five year time periods. Thus, in this case the datacture is a real-life example of the data stmec
depicted in Table 5, where P-A=C.

Preliminary results (not presented) show that ti@&MWC HAPC-CCREMSs are able to retrieve the original
estimates of age, period, and cohort effects ih bets of simulated fake data.

References

Luo, L and J Hodges. 2013. “The Cross-Classified-Rgriod-Cohort Model as a Constrained
Estimator.” Paper PresentedSatsion 24, Innovative Theory and Methods for Demographic Research,
Population Association of America 2013 Annual MegtiNew Orleans, LA.

Powers, DA. 2013. “Black-White Differences in Matal Age, Maternal Birth Cohort, and Period Effects
on Infant Mortality in the US (1983-2002)Sbcial Science Research 42(4): 1033-1045.

Yang, YC and KC Land. 2013. Age-Period-Cohort AsayNew Models, Methods, and Empirical
Applications. Chapman & Hall/CRC Interdiscipling®yatistics Series. New York, NY: CRC Press,
Taylor & Francis Group.




