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Abstract 
Sub county population projections are generally very problematic. The inputs required for a 
traditional cohort-component method, are rarely available at sub county geographies. There are 
simple workarounds, such as the Hamilton-Perry method, but these techniques require areal units 
that are stable between two censuses in order to generate cohort-change ratios and are oftentimes 
only used to project populations along short projection horizons, namely 10 years. Understanding 
the implications of climate change requires additional understanding of coupled human-natural 
systems interactions. This paper proposes a new housing unit based population projection 
methodology for sub-county units that will be used in conjunction with sea-level rise modeling to 
project populations vulnerable to inundation by 2050 in coastal Georgia. 
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Introduction 

 Population projections are an integral part of understanding the future of human 

populations (2013, Smith, Tayman and Swanson 2001, Lutz 2013) and are used in planning, 

policy making, and environmental understanding (Glover and Prideaux 2008, Hansen 2010, 

Jenouvrier et al. 2009, Lutz and Samir 2010, Perkins 2014). Despite the historical importance of 

population projections, projection methodologies for small areal units – namely sub-county units 

– tend to be less robust than projection methodologies at larger scales (Swanson, Schlottman and 

Schmidt 2010, Baker et al. 2013), tend to have serious questions regarding their accuracy for 

longer range projections (Smith et al. 2001), and fall victim to the modifiable areal unit problem 

or the MAUP (Cromley, Ebenstein and Hanink 2009) . In order to overcome these limitations on 

accuracy, demographers have proposed several projections methodologies for sub-county units 

such as the Hamilton-Perry method (Swanson et al. 2010), the Share method (Zeng et al. 2014), 

and various extrapolation methodologies (Swanson and Tayman 2012a). Despite the plethora of 

projection methodologies designed to overcome the problems listed above, the MAUP still 

remains (Swanson et al. 2010). This paper proposes a novel projection methodology suitable for 

sub-county units based on the Hammer Method (Hammer et al. 2004) and the Housing Unit 

Method (HU) for population estimation (Cai 2007). It also demonstrates this method’s use by 

combining it with sea-level rise modeling in Coastal Georgia. 

 Projection methodologies share much in common with estimation methodologies. Many 

of the projection methodologies are also employed as estimation methodologies. The four main 

types of estimation methodologies – extrapolation, censal-ratio, component, and statistical 

(Siegel 2002) – also describe the main types of projection methodologies. In fact, most 



3 
 

estimation methods are simply projections to a short time period, generally t+1, while most 

projections are to a longer time period. The same basic demographic accounting equation used 

for population estimates is also the main equation used for the cohort-component method of 

population projection (Swanson, Siegel and Shryock 2004). The HU method is recognized as one 

of the most commonly used forms for estimating small area populations (Smith 1986, Byerly 

1990, Smith, Nogle and Cody 2002), having been advocated before Congress for use by the 

Census Bureau for sub county population estimates (Swanson 2006), and it has been in practical 

use by State and Local demographers since at least 1942 (Swanson 2010). Despite the known 

similarities between estimation and projection methodologies, the HU method has never been 

used in projection methodologies even with the employment of all four types of estimation 

methodologies in population projections. While such a method would be subject to the same bias 

and error as estimates (Smith and Cody 1994), it would be able to convert any projection of 

housing units into projections of population. 

 In spite of the proposed solutions to the MAUP (Norman, Rees and Boyle 2003, Martin, 

Dorling and Mitchell 2002), no current projection methodology can currently be used across all 

geographies – national, state, county, and sub-county – as a standalone methodology due to these 

problems. However, the Hammer Method (Hammer et al. 2004) for reverse forecasting 

standardized sub-county boundaries with estimates of housing units can be combined with the 

HU method to produce one ontologically coherent estimation and projection methodology for all 

geographies. This paper develops such a method and demonstrates a potential use in 

understanding future climate change scenarios for sea level rise in a six county area of Coastal 

Georgia. The methodology is considered in light of the contribution to sub-county projection 
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methodologies and through a 3D geovisualization of sub-county Population estimates and 

forecasts for 1940 through 2050.  

Methods and Materials 

 The method described here relies upon the similarities between population estimates and 

projections. The underlying relationship between a population estimate (equation 1) and 

projection (equation 2) is demonstrated with demographic accounting equation (Newbold 2010) : 

(1)  1 0P P B D I E= + − + −   

(2)  1t tP P B D I E+ = + − + −   

Where B is the Births, D is the Deaths, I is immigration, and E is the emigration. The only 

significant difference between the two equations is in the definition of the time period. For an 

estimate, it is always time 1 i.e. the present year and based on the population from t-1. For a 

projection, it is always time t+1 based on the population from time t. For all intents and 

purposes, most projection methodologies are estimation methodologies at their core, and the HU 

method is no different and is often referred to as a balancing equation (Swanson 2010, Smith and 

Cody 1994).  

Equation 3 demonstrates the HU method (Swanson 2010) : 

(3)  *O*PPH GQtP H= +   
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Where H is the number of housing units, O is the occupancy rate, PPH is the persons per 

household, and GQ is the group quarters population. Any error associated with the HU 

method is attributable to the quality of the inputs (Siegel and Swanson 2008). This 

methodology can be further simplified by combing the occupancy rate with PPH to create a 

PPHU or population per housing unit as the total population divided by the total housing 

units both occupied and unoccupied (Cai 2008). PPHU will essentially roll the group quarters 

population, as a component of the total population, into this variable. This leads to equation 

4. 

(4)  *PPHUtP H=   

The HU method on its own could produce a population projection if all three variables are 

projected on their own, but the aforementioned boundary changes at sub-county scales would 

lead to problems in forecasting any of the component inputs. The Hammer method, however, can 

provide a long range back cast of housing units for normalized boundaries in any given census 

geography (whether its 1990, 2000, or 2010 geographies). Based on the “year structure built” 

question in Census data, the method produces proportionally adjusted housing unit estimates at 

the smallest census geography possible – the block group. While Census designated boundaries 

may change, housing units typically do not move (Hammer et al. 2004).  

(5)  ( )10 10
ˆ
ˆ

t
ijt t t t

ij ij j j t
j

H
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These estimates of housing units for each block group in each county provide the first of the 

two inputs needed to convert an estimate of housing units into an estimate of total population. 

The question then turns to producing estimates of the PPHU variable. 

 The two variables required to calculate the PPHU are known for each historical census at 

the county level – the total population and the total number of housing units. Thus, the PPHU for 

each county is known while the PPHU for each component block group must be estimated. 

Keeping in the same tradition as Hammer, we can utilize the known variability in current decade 

block group geography for PPHU to backcast PPHU for prior decades based on this variability. 

Equation 6 demonstrates the historic calculations of Population for each block group for any 

given time period. 

(6)  ˆ*P

* *

t
jt t

ij ijT
ij t t

j ijT
j

P
P

PPHU
PPHU H

PPHU

 
 
 

=     ′        
∑

  

Where the Population in time t in block group I in county j is given as the ratio of the 

PPHU at the block group level to the County from the ACS or most recent decennial Census 

multiplied by the PPHU observed PPHU from the historic census data. This initial PPHU 

estimate for each block group is then multiplied by the estimated number of Housing Units as 

estimated from the Hammer Method to create the initial estimate of population. These are then 

summed to the county level and proportionally adjusted based on the observed population of a 

county from the time period in question. This provides us with variable PPHU estimates for each 
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block group for each time period in any given county. By simply dividing the estimated 

population by the estimated number of housing units we will have generated the PPHU for any 

given time period
t

ij
t

ij

P
H
′

′
. This makes it possible to produce a historic time series of population and 

housing units at the block group geography with consistent boundaries for a period of 1940-

2010. Equation 7 is the fully denoted methodological approach for these historic estimates while 

equation 8 is the abridged formulation. Equation 8 can be utilized as a projection methodology as 

well through any set of extrapolation methods for the H and PPU values (Smith and Cody 1994, 

Bogue 1950, Starsinic and Zitter 1968, Cai 2008, Armstrong 2001). 
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(8)  *t t t
ij ij ijP H PPHU′ ′=  

 

Given the similarities between population estimate and projection methodology 

(Swanson 2010, Swanson and Tayman 2012b, Smith and Cody 2012, Smith et al. 2001, Smith 

and Cody 1994), the ability to estimate key components of the Housing Unit Method  at the sub-
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county scale (Cai 2008, Hammer et al. 2009, Hammer et al. 2004), and the assumption that 

PPHU values are variable across space and time, we will now demonstrate the proposed 

methodology for this six county region of Coastal Georgia. 

Data 

Data for conducting this population projection comes from two main sources. The first 

source of data comes from the American Community Survey 2008-2012 estimates. The ACS 

provides the “year structure built” data, and the contemporary census boundaries for block 

groups. The second piece of data is the actual historic count of housing units and population for 

each county. This data is available as digitized records from the Census Bureau’s website1. It 

should be noted in the consideration of these inputs that the ACS data, though similar to 

decennial data, is subject to many types of error. However, all released ACS data have 

confidence limits above 90% (Swanson and Tayman 2012b). In lieu of ACS error, it may seem 

best to view the historic estimates of population and projections as projections rather than a gold-

standard estimate of such populations. 

For the sea-level projection, data for the Digital Elevation Model comes from the US 

Geological Survey’s National Elevation Dataset at the 1/3 arc-second (approximately 10 meters) 

resolution. Inundation was assumed using the ‘bathtub’ model for sea-level rise (Poulter and 

Halpin 2008, Rogers, Saintilan and Copeland 2012) where all pixels within 1m of sea-level are 

assumed to become inundated. The land area of any given block group that will be inundated 

                                                             
1 For 1940 to 1990, data can be found at http://www.census.gov/prod/cen1990/cph2/cph-2-1-1.pdf. Census 2000 
data can be downloaded through American FactFinder. 

http://www.census.gov/prod/cen1990/cph2/cph-2-1-1.pdf
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was calculated and this percentage was then applied to the projected block group population in 

2050 to assess the future populations at risk. 

Evaluation 

 Evaluating population projections typically involves a comparing a projection launched 

from a historic period with population counts in more contemporary time periods (Murdock et al. 

1991, Kanaroglou et al. 2009). This proves problematic, however, when looking to compare sub-

county areas due to the changes in census geography that would have occurred over any 

evaluation period. For this reason, we have chosen to evaluate the proposed method in 

comparison to other projection methodologies at both the sub-county and county level. It should 

be noted that while this method of comparison does not utilize any of the typical demographic 

ex-post-facto evaluation statistics such as mean absolute percent error, mean algebraic percent 

error, or root mean squared error (Levinson 1947, Abraham and Ledolter 2009, Hauer, Baker and 

Brown 2013), this comparison is more similar to a feasibility approach (Lutz, Sanderson and 

Scherbov 1998, Tippett 2013) i.e. are these projections feasible compared to other projection 

methodologies? Absent any advanced knowledge of a future population count, this comparison 

merely is to determine if performance of this proposed method is comparable to similar 

projections across similar time periods across similar geographies. Here we summarize the 

similarity of the results in the proposed method to the Hamilton-Perry method and the Shift-

Share Method at the sub-county scale and with the cohort-component method at the County 

Scale.  
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Results  
 Table 1 summarizes the comparisons of the proposed method with sub-county areas in 

south Fulton County, Georgia  (Hauer 2013, Wm. Thomas Craig 2014) as produced for the South 

Fulton County Water & Sewer Authority as well as county-level comparisons in Coastal Georgia 

to the Georgia Governor’s Office of Planning and Budget’s official population projections 

(Budget 2013). Figure 1 also provides a spatial review in the form of a 3D geovisualization 

(Hauer 2012) of the six counties in Coastal Georgia for the period 1940 to 2050 at the block 

group level in an animated gif format. At the sub-county scale, the HU method of projection in 

2060 falls within a range created by a Hamilton-Perry projection and a Shift-Share projection, 

though closer to Hamilton-Perry than to the Shift-Share. At the county-scale, the HU method 

projects county level populations that are comparable (within 10%) of a cohort-component 

generated projection. These results suggest that the HU method can produce similar projection 

results as comparable methodologies at both sub-county and county scales demonstrating the 

pliability of application across varying scales -- both geographic and temporal in nature. Figure 1 

demonstrates the method’s unique ability to standardize geographies across space and time to 

produce a fine-grained picture of both historic and future populations at small-scales – a 

remarkable strength in the face of the challenges posed by modifiable areal unit problems.  
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Table 1. Comparisons of the Housing Unit Method with other projection 
methodologies across various geographies and time scales. 

  
Method 

Area Year HU Method 
Hamilton-
Perry 

Shift-
Share 

Cohort-
Component 

South Fulton 
Area 2060 121,431 118,407 128,214 

 
 

  
    

Bryan County 2030 
           
38,424  

  
44,465 

Camden County 2030 
           
68,078  

  
77,516 

Chatham County 2030 
         
330,187  

  
354,945 

Glynn County 2030 
           
97,760  

  
98,625 

Liberty County 2030 
           
80,246  

  
85,512 

McIntosh 
County 2030 

           
15,947      18,653 

 

Figure 1. Block group population counts (color) and densities (height) for the six county 
region of Coastal Georgia. The Green lines traversing the coast are Interstate Highways. 
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 Figure 1 is displayed such that population density within each block group is represented 

vertically while the number of total population is represented by the color – the taller the block 

group, the higher the density, and the darker the block group, the more total population within 

the block group. The city of Savannah anchors the map in the forefront in the bottom right while 

the city of St. Mary’s in Camden County anchors the map on the top left2. As can be seen in 

Figure 1, several classic demographic phenomena are readily apparent in the historic period of 

1940-2010. The historic population growth at the sub-county level for Coastal Georgia has been 

quite uneven, as should be expected (Bongaarts 2009, Meyer and Turner 1992, Bourne and Rose 

2001), the decline of the central city of Savannah into the classic donut shape of modern urban 

development (Soja 1996, Deal and Schunk 2004), and the rise of surburan enclaves or edge cities 

(Garreau 2011, Bingham, Bowen and Amara 2013) are all readily apparent in an easy to 

understand visual manner. In terms of the projected geographic distribution of future populations 

along the coast, several troubling hot spots can also be seen. While Tybee Island, Georgia, west 

of the city of Savannah, and a typical beach community, should not experience much growth 

over the next forty years, Wilmington Island, located several miles inland from Tybee is 

projected to continue to grow quite rapidly. All in all, the six county coastal Georgia region is 

projected to grow from 503,000 people in 2010 to around 816,000 people in 2050 – a 62% 

increase the population. 

 

 

                                                             
2 Who said North was up? 
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Table 2. Current Populations, Projected populations in 2050, and the populations at risk for Six 
Coastal Counties in Georgia, 2010-2050. 

Area 
2010 
Population 

2050 
Population 

Projected Populations at risk of 
1m of Sea level Rise 

% of Total 
Population at Risk 
in 2050 

Bryan County 
                    
30,391  

                    
49,863  

                                                  
6,369  12.8% 

Camden County 
                    
50,693  

                    
92,825  

                                                
10,986  11.8% 

Chatham County 
                 
265,695  

                 
427,144  

                                                
60,652  14.2% 

Glynn County 
                    
79,821  

                 
123,524  

                                                
28,038  22.7% 

Liberty County 
                    
62,746  

                 
104,733  

                                                      
690  0.7% 

McIntosh County 
                    
14,289  

                    
18,291  

                                                  
5,410  29.6% 

  
      

Total 
                 
503,635  

                 
816,380      112,145 13.7% 
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Figure 3. Populations at Risk for Sea Level Rise in Coastal Georgia in 2050 at the Block 
Group Level. 
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Table 2 shows the 2050 projected populations and populations at risk for inundation for 

the six counties in Georgia. In total, we find approximately 112,000 will be at risk for 1m of sea 

level rise in 2050 in Coastal Georgia representing 13.7% of the coastal population. Chatham and 

Glynn counties are poised to see the greatest numbers of population at risk, accounting for nearly 

79% of the total populations at risk for sea level rise. Figure 3 shows the total populations at risk 

for sea level rise by block group and Figures 4 and 5 show more detailed maps of Chatham and 

Glynn counties. The areas of these counties with the greatest concentration of block groups, 

indicative of downtown areas and also the old city cores, show the least risk of inundation. It 

seems that Coastal Cities are founded at some of the highest elevations within a county. This is 

true for the county seats of Camden, Chatham, Glynn, and McIntosh counties. The populations at 

risk also do not follow a natural progression of risk inland i.e. an area that is 5 miles inland could 

be at less risk than area that is 20 miles inland.  

 

Discussion 
Human-natural systems interfaces are important for understanding a host of ecological 

processes including wildfires (Syphard et al. 2007), forests and public land use (Hammer et al. 

2009), and of course sea-level rise (Grubler and al 2007). Additionally, there is a growing need 

to understand the population dynamics associated with climate change(Hugo 2011) with local 

communities increasingly burdened with creating adaptation and mitigation policies (Lutsey and 

Sperling 2008, Titus et al. 2009) for sea-level rise. Oftentimes, research to aid these local areas 
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focuses on the locales at risk of sea-level rise (Craft et al. 2009, Wu, Yarnal and Fisher 2002, 

Gesch 2009) or combine current population estimates with future scenarios (Lutz et al. 2007, 

Plyer, Bonaguro and Hodges 2010, Rowley et al. 2007). Most of this work also focuses on 

geographic scales that are far outside the bounds of sea-level rise risks, choosing to focus on 

National, regional, and even county scales, assuming all populations in those geographies are at 

equal risk. Lacking adequate methodologies for projecting small areas, scholars are often left 

with projections of sea-level rise at the scale of 10 meter by 10 meter pixels and population 

projections at the county level. Curtis and Schneider (Curtis and Schneider 2011), utilizing a 

county level cohort-component projection, project that 20 million people will be affected by sea-

level rise in parts of Florida, California, New Jersey, and South Carolina by 2030, for instance. 

This type of approach to modeling future population scenarios is quite problematic. The 

assumption that the total population in any given coastal county is at equal risk of sea level rise 

inundation renders the point of utilizing sea-level rise modeling rather moot. Determining the 

areas at risk is rather redundant since it doesn’t matter if 20% of a county is at risk or 80% of a 

county is at risk when the total projected county level population is considered at risk regardless 

of the encroachment of the sea. If that is our working assumption, than a simple county level 

population projection of coastal counties will suffice in estimating the populations at risk of sea 

level rise inundation – no coastal modeling is required. Currently, 39% of the United States’ 

population resides in Coastal areas. With just the working assumption that all coastal populations 

share equal risk of sea level rise, we can easily deduce that 121 million people in the United 

States are currently at risk of sea level rise. However, we know that inundation risk is not equally 

shared across coastal populations. While inundation risk can be highly localized, other hazards 

that are the byproduct of sea level rise are potentially county wide. These include flood plains, 
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storm surges, and changes in highest-high high tides, amongst others (Nicholls and Cazenave 

2010, Burton 2012). 

Coastal Georgia and Coastal South Carolina share many geophysical and population 

characteristics. The respective major cities in both states, Savannah and Charleston, are 

oftentimes lumped together in travel guides (Sullivan 2007), both coastal areas are home to 

Gullah populations (Pollitzer 2005), the system of barrier islands are both called sea islands 

(Jones-Jackson 2011), and both states share similar salt marsh estuaries (Odum 1988). Future 

projections also show similar population sizes with coastal South Carolina projected at 722,000 

people by 2030 (Curtis and Schneider 2011) and Georgia with 816,000 people by 2050. Yet the 

total projected populations at risk, despite these similarities, are markedly different. Previous 

projections for South Carolina find all 722,000 people at risk for inundation while we find 

112,000 people at risk in Georgia. Scale seems to play a decisive factor in these differences 

(Herod 2011), and specifically the scale at which population projections are undertaken. By 

better approximating the scale of sea level rise with population projections, we are better able to 

project the future populations at risk for inundation. 

The method presented represents a methodological step forward for small area population 

projections by crafting a projection methodology that unifies geographies across space and time 

and projection and estimation methodologies. Given the strong assumptions regarding the PPHU 

variable and the variability of ACS estimates, the similarities between the proposed method and 

conventional projection methodologies speaks to the strength and value of a method that can be 

employed across census designated scales for both forecasting and backcasting. Despite these 

results, there are important limitations with this method regarding the components of projected 
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populations. It is clear that this methodology can project total populations, but the ability to 

project components (age/sex/race) is left unexplored.  Further refinements of this method to 

project the components of a population would be a fruitful endeavor in future demographic 

research. Previous scholars have questioned whether projected populations will remain in 

inundated areas (Curtis and Schneider 2011) and whether adaptation and mitigation policies will 

be employed thus shaping future population scenarios along unknown future public policies 

(Wilson and Piper 2010, Gifford 2011). We share the same questions but recognize the need for 

baseline scenarios to both help shape these public policy decisions and to craft ever better 

demographic scenarios. Much work is still to be done in understanding the demographic 

implications to environmental phenomena; this is but one piece in the puzzle. 

It should also be noted that the analysis contained herein utilizes the basic bathtub model 

for sea level rise, the accuracy of which has been questioned by ecologists and systems modelers 

(Murdukhayeva et al. 2013, Parkinson and McCue 2011) and has been critiqued as being too 

simplistic. The authors of this paper share this critique and welcome future projections that can 

be utilized alongside a more comprehensive set of sea level scenarios. However, with regards to 

population projections, more complicated methodologies do not always yield more accurate 

results (Smith et al. 2001, Swanson and Tayman 2012b). The results contained herein should not 

necessarily be dismissed due to the simplified approach to sea-level rise modeling.  

Despite these limitations, the successful application of this project method is quite 

promising for a number of areas for scholarly inquiry – not just for sea-level rise. Future 

populations residing in flood plains, hurricane tracks, tornado or earthquake prone areas, and so 

on have the potential to be modeled and understood. Additionally, past population trends of sub-
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county areas are now possible to be understood at a level of detail that has been unheard of in the 

demographic literature. The leap from housing units to population should not be underestimated 

and through the combination of this method with a whole host of other processes appears near 

limitless.  



20 
 

Acknowledgements 
 We would like to thank Georgia SeaGrant for providing funding for this project. 

 

  



21 
 

Bibliography 

 

(2013) The United Nations 2012 Population Projections. Population and Development Review, 39, 551-
555. 

Abraham, B. & J. Ledolter. 2009. Statistical methods for forecasting. John Wiley & Sons. 
Armstrong, J. S. 2001. Principles of Forecasting: A Handbook for Researchers and Practitioners. Springer. 
Baker, J., A. Alcantara, X. M. Ruan, K. Watkins & S. Vasan (2013) A Comparative Evaluation of Error and 

Bias in Census Tract-Level Age/Sex-Specific Population Estimates: Component I (Net-Migration) 
vs Component III (Hamilton-Perry). Population Research and Policy Review, 32, 919-942. 

Bingham, R. D., W. M. Bowen & Y. Amara. 2013. Beyond edge cities. Routledge. 
Bogue, D. J. (1950) A Technique for Making Extensive Population Estimates. Journal of the American 

Statistical Association, 45, 149-163. 
Bongaarts, J. (2009) Human population growth and the demographic transition. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 364, 2985-2990. 
Bourne, L. S. & D. Rose (2001) The changing face of Canada: The uneven geographies of population and 

social change. The Canadian Geographer/Le Géographe canadien, 45, 105-119. 
Budget, O. o. P. a. 2013. State Population Projections vintage 2013. 
Burton, D. A. (2012) Comments on “Assessing future risk: quantifying the effects of sea level rise on 

storm surge risk for the southern shores of Long Island, New York,” by Christine C. Shepard, Vera 
N. Agostini, Ben Gilmer, Tashya Allen, Jeff Stone, William Brooks and Michael W. Beck (Volume 
60, Number 2, 727–745, doi: 10.1007/s11069-011-0046-8). Natural hazards, 1-3. 

Byerly, E. 1990. State and Local Agencies Preparing Population and Housing Estimates. In Current 
Population Reports, Series P-25-1063. Washington, DC: US Government Printing Office. 

Cai, Q. (2007) New techniques in small area population estimates by demographic characteristics. 
Population Research and Policy Review, 26, 203-218. 

Cai, Q., Spar, M. 2008. An Evaluation of Housing Unit-Based Estimates in Virginia. 
Craft, C., J. Clough, J. Ehman, S. Joye, R. Park, S. Pennings, H. Guo & M. Machmuller (2009) Forecasting 

the effects of accelearted sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology 
and the Environment, 7, 73-78. 

Cromley, R. G., A. Y. Ebenstein & D. M. Hanink (2009) Estimating Components of Population Change 
from Census Data for Incongruent Spatial/Temporal Units and Attributes. Journal of Spatial 
Science, 54, 89-99. 

Curtis, K. & A. Schneider (2011) Understanding the demographic implications of climate change: 
estimates of localized population predictions under future scenarios of sea-level rise. Population 
and Environment, 33, 28-54. 

Deal, B. & D. Schunk (2004) Spatial dynamic modeling and urban land use transformation: a simulation 
approach to assessing the costs of urban sprawl. Ecological Economics, 51, 79-95. 

Garreau, J. 2011. Edge city: Life on the new frontier. Random House LLC. 
Gesch, D. (2009) Analysis of Lidar Elevation Data for Improved Identification and Delineation of Lands 

Vulnerable to Sea-Level Rise. Journal of Coastal Research, Special Issue 53, 49-58. 
Gifford, R. (2011) The dragons of inaction: Psychological barriers that limit climate change mitigation 

and adaptation. American Psychologist, 66, 290. 
Glover, P. & B. Prideaux (2008) Using Population Projections to Identify Aspects of Future Tourism 

Demand. Advances in Hospitality and Leisure, Vol 4, 4, 185-209. 



22 
 

Grubler, A. & e. al (2007) Regional, national, and spatially explict scenarios of demographic and 
economic change based on SRES. Technological forecasting and social change, 74, 980-1029. 

Hammer, R., S. Stewart, T. Hawbaker & V. Radeloff (2009) Housing growth, forests, and public lands in 
Northern Wisconsin from 1940 to 2000. Journal of Environmental Management, 90, 2690-2698. 

Hammer, R., S. Stewart, R. Winkler, V. Radeloff & P. Voss (2004) Characterizing Spatial and Temporal 
Residential Density patterns from 1940-1990 across the North Central United States. Landscape 
and Urban Planning, 69, 183-199. 

Hansen, H. S. (2010) Small-Area Population Projections - A Key Element in Knowledge Based e-
Governance. Electronic Government and the Information Systems Perspective, 6267, 32-46. 

Hauer, M. (2012) A 3D Spatio-Temporal Geovisualization of Subcounty Estimates of Historic Housing 
Density in Metro Atlanta, 1940-2009. Spatial Demography, Forthcoming. 

---. 2013. Population Projections for the Cities of Union City, Fairburn, and Palmetto. Law Offices of Wm. 
Thomas Craig, LLC. 

Hauer, M., J. Baker & W. Brown (2013) Indirect Estimates of Total Fertility Rate Using Child 
Woman/Ratio: A Comparison with the Bogue-Palmore Method. Plos One, 8. 

Herod, A. 2011. Scale (Key Ideas in Geography). Routledge, New York. 
Hugo, G. (2011) Future demographic change and its interactions with migration and climate change. 

Global Environmental Change, 215, 521-533. 
Jenouvrier, S., H. Caswell, C. Barbraud, M. Holland, J. Stroeve & H. Weimerskirch (2009) Demographic 

models and IPCC climate projections predict the decline of an emperor penguin population. 
Proceedings of the National Academy of Sciences of the United States of America, 106, 1844-
1847. 

Jones-Jackson, P. 2011. When roots die: Endangered traditions on the Sea Islands. University of Georgia 
Press. 

Kanaroglou, P. S., H. F. Maoh, B. Newbold, D. M. Scott & A. Paez (2009) A demographic model for small 
area population projections: an application to the Census Metropolitan Area of Hamilton in 
Ontario, Canada. Environment and Planning A, 41, 964-979. 

Levinson, N. (1947) The Wiener RMS (root mean square) error criterion in filter design and prediction. 
Lutsey, N. & D. Sperling (2008) America's bottom-up climate change mitigation policy. Energy Policy, 36, 

673-685. 
Lutz, W. (2013) Demographic Metabolism: A Predictive Theory of Socioeconomic Change. Population 

and Development Review, 38, 283-301. 
Lutz, W., A. Goujon, K. Smir & W. Sanderson. 2007. Vienna yearbook of population research. Vienna, 

Austria: Vienna Institute of Demography. 
Lutz, W. & K. C. Samir (2010) Dimensions of global population projections: what do we know about 

future population trends and structures? Philosophical Transactions of the Royal Society B-
Biological Sciences, 365, 2779-2791. 

Lutz, W., W. C. Sanderson & S. Scherbov (1998) Expert-based probabilistic population projections. 
Population and Development Review, 139-155. 

Martin, D., D. Dorling & R. Mitchell (2002) Linking censuses through time: problems and solutions. Area, 
34, 82-91. 

Meyer, W. B. & B. L. Turner (1992) Human population growth and global land-use/cover change. Annual 
review of ecology and systematics, 23, 39-61. 

Murdock, S. H., R. R. Hamm, P. R. Voss, D. Fannin & B. Pecotte (1991) Evaluating Small-Area Population 
Projections. Journal of the American Planning Association, 57, 432-443. 

Murdukhayeva, A., P. August, M. Bradley, C. LaBash & N. Shaw (2013) Assessment of inundation risk 
from sea level rise and storm surge in northeastern coastal national parks. Journal of Coastal 
Research, 29, 1-16. 



23 
 

Newbold, B. 2010. Population Geography. Lanham, Maryland: Rowman and Littlefield Publishers, Inc. 
Nicholls, R. J. & A. Cazenave (2010) Sea-level rise and its impact on coastal zones. science, 328, 1517-

1520. 
Norman, P., P. Rees & P. Boyle (2003) Achieving data compatibility over space and time: creating 

consistent geographical zones. International Journal of Population Geography, 9, 365-386. 
Odum, W. E. (1988) Comparative Ecology of Tidal Freshwater and Salt Marshes. Annual Review of 

Ecology and Systematics, 19, 147-176. 
Parkinson, R. W. & T. McCue (2011) Assessing municipal vulnerability to predicted sea level rise: City of 

Satellite Beach, Florida. Climatic change, 107, 203-223. 
Perkins, D. (2014) Population, projections and rural heath. Australian Journal of Rural Health, 22, 1-1. 
Plyer, A., J. Bonaguro & K. Hodges (2010) Using administrative data to estimate population displacement 

and resettlement following a catastrophic US disaster. Population and Environment, 31, 150-
175. 

Pollitzer, W. S. 2005. The Gullah people and their African heritage. University of Georgia Press. 
Poulter, B. & P. Halpin (2008) Raster modelling of coastal flooding from sea-level rise. International 

Journal of Geographical Information Science, 22, 167-182. 
Rogers, K., N. Saintilan & C. Copeland (2012) Modelling wetland surface elevation dynamics and its 

application to forecasting the effects of sea-level rise on estuarine wetlands. Ecological 
Modelling, 244, 148-157. 

Rowley, R., J. Kostelnick, D. Braaten, X. Li & J. Meisel (2007) Risk of rising sea level to population and 
land area. Eos, Transactions American Geophysical Union, 88, 105. 

Siegel, J. & D. Swanson. 2008. Methods and Materials of Demography. Emerald Group Publishing. 
Siegel, J. S. 2002. Applied Demography: Applications to Business, Government, Law and Public Policy. 

Academic Press. 
Smith, S. (1986) A Review and Evaluation of the Housing unit method of population estimation. Journal 

of the American Statistical Association, 81, 287-296. 
Smith, S. & S. Cody. 2012. Methodology for Producing estimates of total population for counties and 

subcounty areas in Florida. Gainseville, FL: Bureau of Economic and Business Research. 
Smith, S., J. Nogle & S. Cody (2002) A regression approach to estimating the average number of persons 

per household. Demography, 39, 697-712. 
Smith, S., J. Tayman & D. Swanson. 2001. State and Local Population Projections: Methodology and 

Analysis. New York: Plenum. 
Smith, S. K. & S. Cody (1994) Evaluating the Housing Unit Method: A Case Study of 1990 Population 

Estimates in Florida. Journal of the American Planning Association, 60, 209-221. 
Soja, E. W. 1996. Thirdspace: Journeys to Los Angeles and Other Real-and-Imagined Places. Wiley. 
Starsinic, D. E. & M. Zitter (1968) Accuracy of the Housing Unit Method in Preparing Population 

Estimates for Cities. Demography, 5, 475-484. 
Sullivan, M. 2007. Savannah and Charleston. Random House LLC. 
Swanson, D. 2006. Two Plus Two should never equal three: Getting intercensal population estimates 

right the first time. In Statement before the subcommittee on Federalism and the Census 
oversight hearing committee on government reform, US House of Representatives. Wednesday, 
September 6, 2006 Room 2247 Rayburn House Office Building. 

---. 2010. The methods and materials used to generate two key elements of the housing unit method of 
population estimation: Vacancy Rates and Persons per household. 

Swanson, D., A. Schlottman & B. Schmidt (2010) Forecasting the population of census tracts by age and 
sex: an example of the hamilton-perry method in action. Population Research and Policy Review, 
29, 47-63. 



24 
 

Swanson, D., J. S. Siegel & H. S. Shryock. 2004. The Methods and Materials of Demography. Elsevier 
Academic Press. 

Swanson, D. & J. Tayman. 2012a. Extrapolation Methods. In Subnational Population Estimates, 115-135. 
Springer Netherlands. 

Swanson, D. & J. Tayman. 2012b. Sub-national Population Estimates. New York: Springer. 
Syphard, A., V. Radeloff, J. Keeley, T. Hawbaker, M. Clayton, S. Steward & R. Hammer (2007) Human 

influence on california fire regimes. Ecological Applications, 17, 1388-1402. 
Tippett, R., Claibourn, M., Cai, Q. 2013. Population Projections by Demographic Details: A Multi-Layered 

Approach. In Population Association of America. New Orleans, LA. 
Titus, J., D. Hudgens, D. Trescott, M. Craghan, W. Nuckols & e. al (2009) State and Local government 

plant for development of most land vulnerable to rising sea level along the US Atlantic Coast. 
Environmental Research Letters, 4. 

Wilson, E. & J. Piper. 2010. Spatial planning and climate change. Routledge London. 
Wm. Thomas Craig, L. 2014. Water Supply Needs Assessment: South Fulton Municipal Regional Water & 

Sewer Authority. 
Wu, S.-Y., B. Yarnal & A. Fisher (2002) Vulernability of coastal communities to sea=level rise: a case study 

of Cape May County, New Jersey USA. Climate Research, 22, 255-270. 
Zeng, Y., K. Land, D. Gu & Z. Wang. 2014. Household and Living Arrangement Projections at the Small 

Area Level. In Household and Living Arrangement Projections, 109-114. Springer Netherlands. 

 

  



25 
 

Tables and Figures 

Figure 4. Chatham County and surrounding area’s projected populations at risk. Notice 
the large number of block groups in down town Savannah that are spared from sea level 

rise.  
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Figure 5. Glynn County and surrounding area’s projected populations at risk. The densest 
block groups are also the ones with the least number of future populations at risk. 
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