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Introduction

The study of neighborhoods has recently focused on identifying the ‘correct’ level
of aggregation (Clapp and Wang, 2006; Hipp, 2007; Flowerdew et al., 2008; Nau,
2013). While our theory of neighborhoods is complex and nuanced, our quantita-
tive study of them has often been limited to aggregating observations to pre-selected
units, such as the Census tract. We certainly don’t believe these units to represent
the true, on-the-ground neighborhood divisions, but we assume they are correlated
with the spatial effects of neighborhoods and thus provide relatively-explanatory,
extremely-convenient proxies. Neighborhood theories, meanwhile, have empha-
sized the social structure of neighborhoods, often divided by race and class bound-
aries. These perspectives imply an emergent form of neighborhood boundary rather
than a fixed one, defined only by humans’ use of the space and perhaps able to
move over time. This paper proposes a method for using data-identified clusters to
identify such emergent neighborhood boundaries, and evaluates the performance of
these clusters–versus census geographies–as a hierarchical level in predicting crime
rates in Philadelphia in 2008-2012.

Neighborhoods as Demographic Clusters

Neighborhoods as areas of demographic segregation forms a strong thread through
the history of neighborhoods literature. The “natural areas” of Park and Burgess
(1925) consisted of residents with similar social characteristics, segregated by sim-
ilar responses to market forces and by the experienced ecology. Suttles (1972)
showed that even within small units of space, ethnicity divided the residents’ con-
ception and use of a neighborhood. The recent renaissance of neighborhood lit-
erature has focused intently on the effect of segregation and hyper-concentration
of poverty within neighborhoods, building on the theories of Wilson (1987) and
Massey and Denton (1993).

Neighborhoods have many theoretical definitions; they are, at a single time, collec-
tions of similar people, spatially bounded social processes, and areas of correlated
outcomes. A challenge in neighborhood literature is merging all of these intuitive
definitions. The hidden logic in much of the early research is that these areas will of-
ten be the same: areas of similar demographics will serve as the divided area within
which social processes operate, and will be the same spaces in which we observe
similar outcomes. Here, I construct cluster definitions based on similar household
race and ethnicity–the first intuitive concept–and measure the correlation in crime
outcomes–the third concept–without directly measuring social processes.

Block-level racial demographics of American cities exhibit very strong racial clus-
tering. Figure 1 maps household race and ethnicity for a region in South Philadel-
phia in the 2010 Census, illustrating sharp spatial transitions between racially extremely-
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different regions. These regions do not map directly onto Census tract boundaries;
they often span multiple tracts or have boundaries that split a tract.

[Figure 1 about here.]

Consider a resident living in, e.g., an all-White block close to one of the demo-
graphic boundaries clearly visible on the map. The question I ask here is ‘What
areal unit best captures the spatial effects this resident experiences?’ Is their expe-
rience best proxied by the traits of the entire tract? By their exact block? Or by the
homogeneous region in which their block resides, delineated by the sharp boundary
clearly visible to the eye? My hypothesis is that the boundaries of these clusters are
consistent with boundaries in social and activity spaces of residents’ experiences,
and thus will capture an important fraction of the spatial correlation of outcomes.

The comparative strength of these boundaries has important implications for the
theoretical understanding of neighborhood mechanisms, but also methodological
implications for neighborhood effects research. The problem of mis-specified spa-
tial aggregation units is termed the Modifiable Areal Unit Problem (MAUP) (Open-
shaw, 1984). The MAUP states that using arbitrary or misaligned spatial units can
lead to severe bias or highly varying results; this lack of robustness to an arbitrary
decision is problematic. As proposed in the very first paper on the MAUP (ibid.),
a solution is to look for the units that best capture spatial correlations in outcomes,
and provide the best fit in a multi-level analysis. We want to identify boundaries
that are both real on the ground and provide robust, explanatory units. These racial
boundaries are justified by theories of race and neighborhoods; should they also
capture spatial correlations in neighborhood outcomes, they would be very appeal-
ing neighborhood-level units for aggregation.

Method

The process of aggregating polygons into clusters hasa strong tradition termed ’Re-
gionalization’ in the Geography literature. The method I use here, however, comes
from the problem of Image Segmentation in Machine Learning: the distance de-
pendent Chinese restaurant process (ddCRP) (Blei and Frazier, 2011; Ghosh et al.,
2011). This method is very similar in idea to the graph-based spanning tree al-
gorithms of Regionalization, first proposed by Maravalle and Simeone (1995), but
has the benefit of a relatively simple generative model in a Bayesian framework,
allowing for straightforward extensions and for incorporating the full set of tools
developed for Bayesian techniques.

ToThe ddCRP is a bayesian non-parametric probability distribution over partitions.
Each block i is given an assignment ci, the index of a neighboring block or itself.
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The assignments form a directed graph; disconnected clusters in the graph define
the cluster assignment zi. Figure 2 shows a sample ddCRP cluster realization.

[Figure 2 about here.]

Let G be the neighbor graph of the blocks. The probability of block i connecting to
block j, i 6= j, is a function of the distance between them. Here, I use a neighbor
distance function with window 1, meaning that blocks can only connect to their
immediate neighbors or themselves. I have slightly modified the original ddCRP so
that all directed loops confer a probability of α (rather than only nodes pointing to
themselves), so that the probability of a single assignment is given by

p(ci = j|c−i, G, α) ∝


α, i = j
1, i ∼ j, j!→ i
α, i ∼ j, j → i
0, otherwise,

where i ∼ j symbolizes that blocks i and j are neighbors, and j → i symbolizes
that c−i has a path from j to i, and thus connecting ci = j would form a loop.
The number of clusters is equivalent to the number of directed loops in the full
graph (it’s mechanically impossible to have a non-directed loop), including blocks
pointing to themselves.

Conditional on these cluster assignments, each block draws the number of house-
holds of each race and ethnicity, Xi, from a multinomial distribution with cluster-
level parameter, pz. The pz have a Dirichlet prior parametrized by p0. The genera-
tive model is

• c1:N ∼ ddCRP (G,α). This defines cluster assignments z1:N .

• pz ∼ Dirichlet(p0).

• Xi ∼Multinomial(pzi),

in which I use the vague prior p0 = ~1Nrace . I sample from the posterior of this
model conditional on observed Xi using Gibbs sampling.

Clustering Results

The ddCRP model outlined above was fit on 2010 Census block-level household
race and ethnicity data for Philadelphia. Race and ethnicity combinations waere
divided into 8 groups: Non-hispanic (NH) White, NH Black, NH Asian, NH Native
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American/American Indian, NH Hawaiin/Pacific Islander, NH Other, NH Two or
more, and Hispanic. While the ddCRP is a non-parametric model–meaning that the
number of clusters is not fixed ahead of time–the parameter α adjusts the number
of clusters by penalizing new loops, and thus new clusters. I used Gibbs sampling
to sample four chains for values of α of 1, 10−10, 10−20, 10−100, 10−200, chosen to
give an array of numbers of clusters.

Figure 3 presents a map of cluster assignments drawn for each value of α. The
number of clusters identified ranges from a mean of 31 for α = 10−200 to a mean of
1186 for α = 1; for comparison, Philadelphia has 384 tracts, 1,336 block groups,
and 18,872 blocks.

[Figure 3 about here.]

These clusters suggest a city that is highly segregated; significantly more segre-
gated than tract or block-group indices represent. Figure 4 presents Theil’s H index
of segregation calculated for each level of clustering. The index is based on in-
formation theory entropy, and ranges from 0 (each group perfectly matches the
proportions of the entire city, and is thus entirely non-segregated) to 1 (the units are
perfectly segregated). The indices for the race-based clusters are much higher than
those calculated for the census geographies. This is intuitive; by creating groups of
blocks with similar racial proportions, we will obviously measure more racial seg-
regation1. What is surprising, though, is how few clusters are needed to reach such
high segregation indices: for example, we can achieve the level of segregation of
1,336 block groups (H = 0.396) with fewer than 100 clusters. It is well established
that at smaller scales, segregation indices increase dramatically (Wong, 1997), yet
here we can very effectively segregate the city with very few divisions.

[Figure 4 about here.]

Crime Analysis

The fact that a differently drawn set of lines on a map achieves higher segregation
would not be important unless these lines in some way represent an on-the-ground
truth better than another. For evidence of that social importance, I turn to analyzing
crime data.

Crime is a well-studied neighborhood-level phenomenon, experiencing strong neigh-
borhood correlations (e.g. Leventhal and Brooks-Gunn, 2000; Sampson et al., 2002).

1More subtly, clusters are not necessarily of a single race, as they may be defined as groups
of blocks of similarly mixed populations. But broadly, the intution that clusters will yield higher
segregation indices is true.
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To assess the explanatory power of cluster boundaries versus census tracts, I mea-
sure the correlation among crime rates within each of these aggregating units; if
the cluster boundaries better capture the correlations in crime rates, then what-
ever neighborhood mechanism is causing that correlation is should be bound within
those clusters as well.

Crime data comes from the Philadelphia Police Department Crime Incidents dataset
via OpenDataPhilly (Philadelphia Public Interest Information Network, 2013). I
separately aggregated Homicides and Aggravated Assaults in the years 2008-2012
to the census blocks. Figure 5 presents the crime counts for blocks as a function of
block proportion non-Hispanic white.

[Figure 5 about here.]

I model crime counts as a multilevel poisson with log link function, with both clus-
ter and tract crossed random effects. The count Yi of a given category of crime for
block i, with cluster membership zi and tract membership ti is first naively modeled
as

• Yi ∼ Poisson(µi),

• µi = exp{α + γzi + λti},

• γz ∼ Normal(0, σ2
z),

• λt ∼ Normal(0, σ2
t ),

• σ2
z/t ∼ Inv.Gamma(1, 1).

where γz and λt are the hierarchical effects of cluster z and tract t, respectively, and
capture the intra-unit correlation among blocks. The variance of the aggregation-
unit’s effects–σ2

z or σ2
t –is a measure of correlation among blocks in the same group;

aggregation units with a higher-variance effect have lower between-group correla-
tions, and are dividing the outcomes more effectively. I fit the model by selecting
a single clustering assignment from each cluster chain above (four for each α), and
fitting the crime model for each with a single chain in the rstan package for R (Stan
Development Team, 2014), yielding four estimates of σ2

z , σ
2
t for each α. Figure 6

presents the posterior distribution of the variance for each α and each crime. As a
sample calculation, for α = 10−10, which yields on average 142 clusters, the mean
of the four chains’ cluster- and tract-effect variances for aggravated assault are 0.49
and 0.35, respectively. This means that the standard deviation in the effects are 0.70
and 0.59. Given the log-link function in the model, a block in a cluster one standard
deviation above the mean has a predicted aggravated assault rate e0.70 = 2.0 times
higher, and a block in a tract one standard deviation above the mean has a predicted
rate e0.59 = 1.8 times higher. This difference is significant at the 99% level.
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With the broadest clustering (α = 10−200, N(clust) ≈ 31), the tract effects have
a higher variance than the cluster effects. By the next scale of clustering (α =
10−100, N(clust) ≈ 45), the variance in cluster-effects surpasses that of tract-
effects, and gets subsequently much larger. At the level of a similar number of
clusters and tracts (N(tract) = 384), the cluster variances are much higher, and
thus the clusters are better capturing spatial correlations. This is entirely unsurpris-
ing: we have not controlled for block-level race, by which the clusters were defined.
Any effect of block-level race would be captured in this cluster-level correlation.

[Figure 6 about here.]

To account for this, I extend the model to control for block-level race and ethnicity,
as well as total population, population density, and area zoned for commercial and
residential use. Block-level race and ethnicity was divided into dummy variables
for bins of 0-5

• µi = exp{α + βXi + γzi + λti},

where Xi is the vector of block-level covariates, and with the rest of the model the
same as above.

[Figure 7 about here.]

The controls had opposite effects for aggravated assault and homicide. The tracts
are now generally out-performing the clusters for large scales of aggregation, though
they are roughly on par when the aggregation scale yields a similar number of clus-
ters and tracts (n(tracts) = 384)2. For homicide, however, the benefits of clusters are
striking: the clusters better capture spatial correlations in homicide then tracts at all
scales. For α = 10−10, a mean of 142 clusters is produced; the cluster traits have
an estimated variance of 0.21, versus 0.15 for tracts. This corresponds to a cluster
with an effect one standard deviation above the mean expecting a 58% higher homi-
cide rate, compared to a 47% higher homicide rate in a tract one standard deviation
above the mean tract.

Conclusion

This project recognizes the importance of fine-scale racial boundaries in cities, and
measures their explanatory power in spatial correlations in crime. The ddCRP

2Ongoing analyses include selecting an α that yields a similar number of cluster and tracts
(n(tract) = 384), and comparing block groups as an alternate to tracts.
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model provides a formal, Bayesian method to identify these racial clusters. The
clusters strongly outperform tracts in capturing spatial correlations in homicides,
providing evidence that the social processes which yield these spatial correlations
are bounded by these same racial boundaries. The evidence for aggravated assault
is less conclusive: tracts outperform the clusters at large-scale clustering, but the
two perform similarly at similar aggregating scales. I am currently exploring the
features of aggravated assault and homicide that yield such different results; the
evidence suggests different spatial correlating mechanisms, bound differently by
racial boundaries.
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Figure 1: Map of household race and ethnicity in South Philadelphia, 2010 U.S.
Census. Colors are weighted averages of household race and ethnicity on the RGB
scale. White, Black, Asian, and Other are only non-Hispanic households.
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Figure 2: A sample cluster assignment of the ddCRP.
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Figure 3: A sample from one chain of cluster results for each α.
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Figure 5: Crime counts from Philadelphia Police Dept. data for 2008-2012, aggre-
gated to block-level and jittered.

14



Agg. Assault 08−12 Homicide 08−12

●●
●
●●●

●●●
●

●●

●●

●
●●

●

●

●

●

●
●
●
●

●●
●●●
●
●

●

●●●●

●

●

●
●

●

●●●●●●

●

●

●

●
●

●

●

●

●

● ●●●●●

●

●●●●●

●

●●●

●●

●●●●

●

●●
●
●

●●●

●
●

●●
●
●

●

●

●
●●

● ●

●
●●●
●●
●
●●

●

●●

●●

●
●

●

●

●●●●●

●

●

●●

●

●●

●

●●

●

●●
● ●●

●
●●●●● ●

●

●
●●

●

●

●●●●
●
●

●

●●
●●●

●●

●●●●●●
● ●

●

●

●
●●●
●

●

●
●
●

●

●

●●●

●
●
●
●
●●
●●●

●
●
●
●

●

●
●

●●
●

●

●
●
●

●

●●

●
●

●

● ●

●

●●●●●
●●●●

●●●
●● ●●●

●
●

●●●●●●

●

●●●

●●●

●
●●●●● ●

●●
●●●●

●●● ●●●●● ●●● ●

●

●●●

●●●
●
●●●●

●

●●●
●
●

●

●
●

●
●
●

●
●
●

●
●●

●●

●

●

●
●

●●●
●

●

●

●

●

●●●
●

●
●

●
●
●

●

●
●●

●
●●●●●

●
●
●

●

●●●●

●

●●●

●

●

●

●●

●
●
●●●

●●
●●●● ●●●●

●

●
●

●●
●

●
●●

●
●●●
●

●

●

●●

●

●●●

●
●●
●
●

●

●
●●
●
●
●●●
●●
●

●●●
●
●

●●● ●●

●●●●●

●●●● ●●●

●●●●●●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●

●●●
●
●

●●
●●●●
●

●
●
●

●●●

●
●●

●
●

●

●●
●

●
●
●

●

●

●

●
●
●

●

●

●●●
●●
●

●●

●●●

●●●●●●●●

●
●

●
●

●●●
●
●● ●●

●

●

●●●

●●

●●●●

●●● ●●●●

●●●●
●
● ●●●●●●●

●●

●

●

●●●●●●●

0.25

0.50

0.75

0.3

0.6

0.9

1.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4

0.6

0.8

1

2

31.25 clusters
45.25 clusters

110.75 clusters
142 clusters

1186.5 clusters

σz
2 σt

2 σz
2 σt

2

V
ar

ia
nc

e

replication

1

2

3

4

Figure 6: Variance of cluster- and tract-effects for naive crossed-effects models.
Rows are labelled by the mean number of clusters among the four ddCRP chains.
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Figure 7: Variance of cluster- and tract-effects for crossed-effects models control-
ling for block-level race/ethnicity, population, population density, and zoning areas.
Rows are labelled by the mean number of clusters among the four ddCRP chains.
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