Trends and Prospects of Mortality by Age and Sex in India: 1991-2030

Introduction

Since independence the public health programme has extensively focused on improvement of infant and child health. This has led to the rapid decline in infant mortality in India. The Infant mortality rate has declined from 129 to 44 per thousand live births during 1971 and 2011. Modernisation, urbanisation, socio-economic advancement, improved medical technology, public health intervention, and changing life style have pushed India to the second stage of epidemiological transition. Disease affecting adult and elderly population becomes common in the second stage of epidemiological transition (Omran, 2005; Ghosh and Kulkarni, 2004). According to the SRS, the share of adult (15-65 years) deaths among male has increased from 30% to 40% and among female share has increased from 28% to 32% in India. The mortality transition and consequent bulging of adult population has enormous implication on the adult deaths in India. Subramanian et al. (2006) found that increasing income inequality has developed the dual burden of morbidity in India. On one side 54.8% children (age 0-4 years) in EAG states died due to major infectious disease whereas 60% adults age 15-69 years died due to major non-communicable disease (NCD) in 2001-2003 (ORGI, 2009). Distribution of death by age showed that child (age 0-4 year) deaths constitutes 3% of the total deaths in Kerala compared with 25% in Uttar Pradesh, whereas adult deaths constitutes almost 30% to 35% of total in all major states of India (SRS, 2013). Thus, slowing the pace of the decline of infant and child mortality rate calls for the policy shift from the maternal-child health to the life style related NCD among the adults (Claeson et al., 200).

However, there are limited numbers of studies on the trends and future prospects of adult mortality in India, Yadav *et al.* (2012) estimated the age specific death rate (ASDR) from 2011 to 2025 for India. The SRS is the only source that provides the mortality estimates in

India. Hence, there is no comprehensive estimate of adult mortality and its determinants in India and states. Data limitation has also been the cause of slow pace methodological innovation to estimate adult mortality across the groups. However, researchers have discussed several direct and indirect methods to measure adult mortality Owing to its importance (as mentioned in chapter 1), level and trend of adult mortality in India must be revisited.

This chapter examines the level and trend of adult mortality by age and sex in India. The beginning of this chapter discusses the level and trend of mortality with available information on age specific death rate (ASDR) and life expectancy, provided by SRS. The ASDR and life expectancy are two most common mortality indicators. Another model based estimate e.g. probability of dying is calculated for adult age group (15-59) and also for other age groups to overview the state of adult mortality in India and selected states. Future prospects of adult mortality have been shown under two assumptions; constant mortality scenario and varying mortality scenario.

Data

To understand the age and sex pattern of mortality, data from two sources; the Census of India and Sample Registration System (SRS) is used.

The Indian Census is the largest single source of a variety of statistical information on different characteristics of the people of India. With a history of more than 130 years, this time tested exercise has been bringing out a wealth of statistics every ten years, beginning from 1872. To the scholars and researchers in demography, economics, statistics, anthropology, sociology and many other disciplines, the Indian Census is the most fascinating source of data. It captures the true diversity of the people of India and hence become one of the powerful tools to understand India. The responsibility of conducting the decennial Census rests with the Office of the Registrar General and Census Commissioner, India under the

Ministry of Home Affairs, Government of India. Census of India provides population composition by age-sex and type of residence up to small geographical location.

This study has used population data by age, sex and residence from Census, for India and selected states to calculate the mortality indicators. Using this data, intercensal growth rate has been calculated using exponential model and then population is interpolated for the year in-between census years. Census population has been adjusted for "age not stated" and then smoothed using "Strong Method".

The SRS is the main source of data for this objective. The SRS system was initiated by the Office of the Registrar General, India. The SRS generates most reliable and continuous data on demographic indicators. It was introduced as a pilot scheme in some selected states in 1964-65 and was converted into a full-scale system in 1969-1970. The SRS is based on dual record system and it involves continuous recording of births and deaths in a sample of villages or urban blocks by a resident (part time) enumerator. In addition, at the end of the six month period, a retrospective survey is conducted by full time supervisor. The data obtained through these two surveys are matched. The unmatched and partially matched events are reverified in the field. The advantage of this procedure is that in addition to elimination of errors of duplication, it leads to quantitative assessment of the sources of distortion in the two data sets of records. SRS is a self-evaluating technique. The sampling units of SRS are replaced periodically using the results of the latest census report.

There are two types of measures of adult mortality: empirical and model based. Empirical estimates are based on vital registration data, surveys or census. A vital registration system with 100% coverage is the best source for measuring mortality indicators. But unfortunately it is mostly available in developed nations of the world.

Methodology

A number of methods/ and measures are used to understand the trends, change and future mortality scenario. These includes computing the probability of death ($_nq_x$) using the life table for adults and other age group, projection of population using cohort-component method, projection of age specific death rate using Lee Carter model

We have used the three years moving average of ASDR for analysis, which is calculated as follows: $_{n}m_{xyi} = (_{n}m_{xyi-1} + _{n}m_{xyi} + _{n}m_{xyi+1})/3$; i = 1991,1996,2001,2006 and 2009 (1)

Distribution of deaths by age

The absolute number of deaths and distribution of deaths by age has been calculated from 1991 to 2009 to examine the levels and trends of adult mortality relative to other age groups. The calculation procedure is slightly different for census years and other years. (Method for census and other SRS based calculation are given below).

For census years: 1991 and 2001,

$$_{n}D_{x} = (_{n}P_{x} *_{n}m_{x})/1000$$
 (2)

where, $_{n}P_{x}$ is the population in age group x to x+n;

 $_{n}m_{x}$ is the death rate of age group x to x+n

 $_{n}D_{x}$ is the number of deaths in x to x+n age group

here, population is borrowed from Census of India, it is adjusted for 'Age not stated' and smoothed using **strong method**. Population of 'age not stated' is equally distributed among all the age groups. **Strong Method** for population smoothing is also recommended by technical group (projection report, 2001).

Strong method for population smoothing

If W_1 , W_2 , W_3 , ..., are respectively the n quinquennial age groups, 0-4, 5-9, 10-14 and so on, then:

 $S(W_2) = 0.25 * O(W_1) + 0.50 * O(W_2) + 0.25 * O(W_3)$

where S is the smoothed population and O is the observed population.

In this way, smoothing of the all n-2 (except the first group W_1 and last group W_n) quinquennial age groups has been carried out. For smoothing, W_1 and W_n , this formula cannot be applied since there are respectively no preceding and succeeding age groups in these two cases. So, W_1 has been smoothed as under:

$$S(W_{0-4}) = O(W_{0-14}) - (S(W_{5-9}) + S(W_{10-14}))$$

Similarly,
$$S(W_{75+}) = O(W_{15-75+}) - (S(W_{15-19}) + ... + S(W_{70-74}))$$

ASDR is borrowed from SRS.

For intercensal years, we have used the age distribution of SRS and the inter-censal population of 1996, 2006 and 2009.

It is computed as $_{n}P_{x} = (_{n}p_{x} * P)/100$

where, $_{n}p_{x}$ is the population distribution taken from SRS and, P is the total population obtained from interpolation.

Probability of death

One of the model based estimate is also calculated e.g. probability of dying/ risk of mortality $_nq_x$ for each five year age group and also for various other age groups: **5q0**, **20q15**, **35q15**, **45q15**, **45q15**, **40q30**, **20q60**, **25q15**, **20q40**. This has been done by constructing life tables using Mortpak.

Separate probabilities for males and females were calculated using this formula:

$$_{n}q_{x}=1-\left(l_{x+n}/l_{x}\right)$$

All the analysis has been carried out for India and four states of India which are in different phases of demographic transition: Uttar Pradesh, Maharashtra, Kerala and Tamil Nadu.

Population projection

Since the mortality projection required the future population by age group, the population projection has been carried out by till 2030. The base year of population projection is 2009

as the SRS age distribution was available for this period. The assumptions, inputs and procedure of population projection are given below:

Base level population: The intercensal population of 2009 and the age-sex distribution of population of 2009 are used as base year population for projection. The 2009 is used as base year because many of our trend analyses are till 2009.

Assumptions regarding fertility: We have used the time series estimates of TFR for India from 1971-2007 to project the TFR till 2030. The trend analysis of TFR is done using Gompertz model (also used by the Expert Committee on Population Projection Technical Group) for projecting the future levels of TFR for India. The lowest threshold for TFR is assumed to be 1.8. Mathematical form of Gompertz model is:

Ln (-(Ln(TFR-L) / (U-L))) = Ln(-Ln*a) + t*Ln*b

Where U and L are the upper and lower limits of TFR respectively and, *a* and *b* are constants. Here, U = 6.5; L = 1.8.

The observed values of TFRs from 1981-2007 were used for projecting the future levels of TFR as the reliable estimates from SRS are available from 1981 onwards. Projected TFR is given in Appendix 2.A.

Sex ratio at birth (SRB): SRB for India was 110 in 2009 (SRS, 2009). This is used as a base year estimate of SRB and it is assumed to remain constant during future years.

Assumptions regarding mortality: Life expectancy at birth (LEB) for base year (2009) is borrowed from SRS abridged life table. LEB for end year (2030) is estimated by using average annual increase in LEB from 2001-05 to 2021-25, projected by Expert Committee. LEB is interpolated for years in-between 2009 and 2030 in Mortpak (Appendix 2.B). UN South Asia model life table has been selected for projection. *Assumptions regarding migration*: International migration has been assumed to be negligible, so it has not been considered for projection exercise.

Projection of age specific death rate by fitting Lee-Carter's Model

Lee carter model is the most widely used model for population projection. Assuming forecast of the single parameter can be used to generate forecasts of the level and distribution of mortality in future. The central death rate m(x,t) can be modelled as the function of age specific constants, a_x and b_x , and time varying index k_t . Model can be defined as:

$$ln(m_{x,t}) = a_x + b_x * k_t + \varepsilon_{x,t}$$

Where k_t is an index of the level of mortality measures the time component using time series model (autoregressive moving average, ARIMA), a_x gives the general shape of the mortality schedule across age, and b_x measure the rate of decline of mortality, and $\varepsilon_{x,t}$ is random error. The error term $\varepsilon_{x,t}$ with mean 0 and variance σ_{ε}^2 reflects particular age-specific historical influences not captured by the model.

The estimates of a_x , b_x , and k_t can be obtained by normalizing b_x to sum to unity and the k_t to sum to zero. Average of $ln\{m(x,t)\}$ over time gives the a_x values, and k_t can be estimated by summing of $[ln\{m(x,t)\}-a_x]$ over age. Also, b_x can be estimated by regressing, without a constant term, $[ln\{m(x,t)\}-a_x]$ on k_t separately for each age group x.

Using these basic inputs separately for male female for period of 1970 to 2011 in the above given Lee-Carter method, age specific death rate has been projected for the period 2012 to 2030 (Appendix 2.C, 2.D, 2.E, 2.F).

Mortality projection: 2016, 2021, 2026 and 2030

To examine the future scenario of adult mortality, number of deaths and its distribution is projected under two possible scenarios from 2011 to 2030.

Constant mortality scenario: It has been done by assuming that ASDR for 2011 will remain constant in future and only age structure (population) will subject to change.

$_{n}D_{x,i} = (_{n}P_{x,i} * _{n}m_{x,2011})$; i = 2011, 2016, 2021, 2026 and 2030

here, $_{n}P_{x}$ is the projected population.

Varying mortality scenario: In varying mortality scenario, population structure and age specific mortality rate both are subject to change.

$_{n}D_{x,i} = (_{n}P_{x,i} * _{n}m_{x,i})$; i = 2011, 2016, 2021, 2026 and 2030

here, ${}_{n}P_{x}$ is the projected population and ${}_{n}m_{x}$ is the projected age specific death rate. Number of deaths and its distribution is presented in broad age groups: 0-4, 5-14, 15-39. 39-49, 50-59, 60+, 0-14 and 15-59.

Results

Probability of dying: 1991, 2001 and 2009

Table 1 presents the estimated probability of death for various age groups; 0-5, 15-34, 15-49, 15-59, 30-69, 60-79, 15-39 and 40-59. In each age group, the probability of death has declined from 1991 to 2009 in India and selected states. In India, the probability of death for adults (45q15) has declined from 27% in 1991 to 23% in 2009 for male whereas 22% in 1991 to 15% for female. This indicates that one male out of every four male and one female out of every five female of fifteen year old die before reaching age sixty in 2009. Probability of dying is consistently higher in the age group 15-59 as compared to other subcategories of children and adults, for both male and female. The risk of dying for adults ($_{45}q_{15}$) is two to four times higher than children ($_{5}q_{0}$) for male and is two times higher for female. Figure 5-6 shows the comparative level and trend of probability of dying among adults and children. Among adults, the probability of death is significantly higher for the age group 40-60 as compared to 15 to 39 years. The state differentials in mortality level are stark. The probability of death in Kerala is lower than that of Maharashtra and Uttar Pradesh for both children and adults. During 1991-2009, the probability of death in Kerala has declined from 22% to 18%

for male and from 11% to 1% for female. In case of Uttar Pradesh, it has reduced from 29% to 24% for male and from 25% to 17% for female during the same time period.

Age Group	19	991	20	001	20	09
	Male	Female	Male	Female	Male	Female
			In	ndia		
5 Q 0	0.109	0.120	0.083	0.091	0.061	0.068
20 Q 15	0.049	0.057	0.047	0.047	0.041	0.035
35 q 15	0.133	0.119	0.128	0.101	0.119	0.079
45 Q 15	0.269	0.218	0.252	0.188	0.227	0.149
40 Q 30	0.491	0.404	0.457	0.352	0.426	0.307
20 9 60	0.828	0.798	0.661	0.581	0.654	0.568
25 q 15	0.068	0.073	0.068	0.062	0.062	0.046
20 Q 40	0.216	0.156	0.197	0.135	0.177	0.108
			Ке	erala		
5 Q 0	0.023	0.017	0.014	0.013	0.012	0.015
20 Q 15	0.032	0.019	0.027	0.016	0.025	0.014
35 Q 15	0.102	0.054	0.088	0.045	0.083	0.039
45 Q 15	0.219	0.106	0.192	0.096	0.177	0.080
40 Q 30	0.413	0.233	0.394	0.219	0.349	0.187
20 Q 60	0.853	0.844	0.640	0.483	0.595	0.422
25 Q 15	0.049	0.027	0.041	0.024	0.037	0.020
20 Q 40	0.179	0.080	0.157	0.074	0.145	0.061
			Maha	rashtra		
5 Q 0	0.073	0.075	0.053	0.057	0.032	0.034
20 Q 15	0.041	0.044	0.047	0.036	0.033	0.024
35 Q 15	0.115	0.096	0.134	0.091	0.107	0.059
45 Q 15	0.240	0.185	0.237	0.170	0.214	0.124
40 Q 30	0.454	0.356	0.446	0.325	0.393	0.273
20 Q 60	0.823	0.803	0.661	0.588	0.610	0.530
25 Q 15	0.057	0.059	0.070	0.050	0.054	0.350
20 Q 40	0.194	0.134	0.180	0.126	0.169	0.093
			Uttar	Pradesh		
5 Q 0	0.139	0.170	0.108	0.126	0.084	0.099
20 Q 15	0.054	0.072	0.053	0.072	0.045	0.046
35 Q 15	0.147	0.142	0.139	0.139	0.130	0.098
45 Q 15	0.287	0.248	0.260	0.231	0.243	0.174
40 Q 30	0.503	0.437	0.460	0.389	0.466	0.339
20 Q 60	0.801	0.786	0.663	0.588	0.703	0.616
25 Q 15	0.074	0.092	0.076	0.094	0.068	0.061
$_{20}\mathbf{q}_{40}$	0.23	0.172	0.199	0.151	0.188	0.12

Table 1: Probability of dying, India and selected states

Figure 1: Probability of death among children, young adult, old adult and adult, Male, India, 1991-2009

Figure 2: Probability of death among children, young adult, old adult and adult, Female, India, 1991-2009

Different types of trend/regression lines were calculated to assess which achieve the best fit to the relation between age and probability of dying. Goodness of fit was determined with the value of coefficient of determination R^2 . Range of R^2 is 0 to 1; value of 1 indicates that the regression line perfectly fits the data points. As the ASDR was available till age 85, we have forecasted till 100 years. We found that the exponential equation best explained the relationship with highest R^2 value for India and states. So, the exponential equation is fitted to find out the probability of death at each age starting with 15 years to the point when probability of death reaches to one, for both male and female in 2009. The probability of death for adults and elderly in 2009 is shown graphically, for each five year age groups by sex (Figure 3-6). From these graphs, gender differentials in the probability of death are clearly observed after age 35 years. In 2009, the probability of death reached unity at the age of 90 years for male and 95.5 years for female, in India and states.

Figure 3: Probability of dying by age and sex, India, 2009

Figure 4: Probability of dying by age and sex, Kerala, 2009

Figure 5: Probability of dying by age and sex, Maharashtra, 2009

Figure 6: Probability of dying by age and sex, Uttar Pradesh, 2009

Distribution of deaths by age and sex: 1991-2030

Table 2-5 and figure 7 shows the actual number of deaths and projected deaths under fixed and varying mortality scenario in India and selected states. In 1991, the observed number of deaths was 8.2 million of which 2.2 million (accounting 27%) were among adults. By 2011, we noticed both increase in absolute and adults deaths. The absolute number of total deaths had increased to 7.5 million by 2001 and 8.6 million by 2011. The number of adults deaths had increased to 2.5 million (33 % of total deaths) in 2001 and 2.6 million (30% of total deaths) in 2011. The distribution deaths suggest that the share of adult deaths has increased from 27% in 1991 to 33 % by 2001 and reduced by 30% by 2011. On the other hand, underfive mortality had declined from 2.9 million (35%) in 1991 to 1.5 million (17%) in 2011. The projected deaths for India under constant and varying mortality scenario are also shown in table 2.2. Results indicate that deaths in constant mortality scenario are higher than in varying mortality scenario. By 2030, the absolute number of deaths will be 13.2 million under constant scenario and 9.3 million under varying scenario. The absolute number of adult deaths is likely to increase under both the scenario. Under the varying scenario, the absolute number of adult deaths will be 2.9 million by 2016, 3.2 million by 2021 and 3.8 million by 2030 whereas, under varying scenario, it will be 2.6 million by 2016 and remains almost/ approximately similar by 2030.

The gender differential in mortality is significant. The absolute number of male deaths is higher than that of female in all adult age group. Future projection also indicates the similar pattern of mortality differentials under both scenarios.

The age distribution of deaths is gradually changing. During 1991 to 2011, the deaths at base level have reduced significantly while that of adults remained similar. By 2030, the child deaths (0-4) will be 1.3 million under constant scenario and 0.6 million under varying scenario.

13

There are considerable interstate differentials in the distribution of death by age. Kerala has lowest level of mortality at all ages followed by Maharashtra and Uttar Pradesh, though the pattern is similar. In Kerala, number of deaths among adults had increased from 0.05 million in 1991 to 0.055 million in 2011 and it is projected to become 0.064 million under constant mortality scenario and 0.046 million under varying scenario. In Maharashtra, there were 0.18 million deaths in 1991, 0.22 million in 2011 and would be 0.3 million under constant scenario and 0.18 million under varying scenario in the adult age group, by 2030. In Uttar Pradesh, number of deaths among adults has remained approximately constant at a level of 0.4 million from 1991 to 2011 and also by 2030, under varying scenario.

State wise analysis also shows remarkable gender differences in the level and prospects of adult mortality. Male mortality in adult ages is higher than that of female which is consistent with the result shown in table 1 e.g. probability of death 45q15 is more for male than female. We have presented the distribution of deaths by using the pyramid for the year 1991, 2011 and 2030 under varying mortality scenario (Figure 8; Appendix G, H, and I). It depicts that there is an upward shift in the mortality. Concentration of deaths has gradually declined in childhood ages and gets accumulated in adult and old ages, which results into the short base and large top pyramid by 2030. Kerala, Maharashtra and Uttar Pradesh follow the same pattern though the magnitude is different.

Age	Actual Deaths						/ / / 8		Projected	Deaths			
group		Ac	tual Dea	ths		Const	ant mort	ality scen	ario	Vary	ing mort	ality sce	nario
	1991	1996	2001	2006	2011	2016	2021	2026	2030	2016	2021	2026	2030
Person													
0-4	2913	2525	2292	1909	1466	1537	1475	1391	1321	1252	977	747	598
5-14	428	425	352	315	210	212	213	211	203	184	154	127	105
15-39	956	968	1093	1045	1027	1102	1175	1220	1235	985	959	911	858
40-49	496	515	563	565	637	706	778	882	975	620	628	654	674
50-59	773	771	837	858	941	1072	1291	1453	1572	956	1052	1080	1084
60+	2691	3174	2408	3622	4293	4919	5838	6943	7906	4489	5009	5592	6034
0-14	3341	2950	2644	2224	1676	1749	1688	1602	1525	1436	1131	873	703
15-59	2225	2254	2492	2468	2605	2880	3243	3555	3783	2561	2639	2645	2616
All ages	8258	8378	7545	8313	8575	9549	10770	12099	13213	8487	8780	9110	9353
Male													
0-4	1416	1241	1125	945	746	776	745	703	669	653	498	370	289
5-14	204	198	175	160	113	113	114	113	109	97	80	65	53
15-39	466	481	579	590	601	653	703	739	753	595	596	582	559
40-49	305	322	361	378	426	465	512	581	643	419	428	450	467
50-59	476	455	514	522	586	711	823	915	989	647	689	702	706
60+	1519	1688	1783	2031	2375	2671	3155	3766	4367	2467	2736	3058	3361
0-14	1620	1439	1299	1105	858	889	859	816	777	750	579	435	341
15-59	1248	1258	1455	1489	1612	1829	2038	2235	2384	1661	1713	1735	1732
All ages	4388	4385	4538	4626	4846	5389	6052	6817	7528	4878	5028	5228	5434
Female													
0-4	1497	1270	1169	910	721	761	730	687	653	599	479	376	309
5-14	225	221	179	155	97	98	99	98	95	87	74	62	52
15-39	492	474	516	459	426	449	472	481	483	391	364	329	299
40-49	188	192	202	184	212	240	266	301	332	202	200	204	206
50-59	299	313	323	335	355	362	468	538	583	308	362	378	378
60+	1186	1439	1098	1737	1918	2248	2683	3177	3539	2023	2273	2534	2674
0-14	1722	1491	1348	1065	818	860	829	786	747	686	553	438	361
15-59	979	979	1041	978	993	1051	1205	1320	1398	901	926	910	884
All ages	3887	3909	3487	3780	3729	4159	4717	5283	5685	3609	3752	3883	3919

Table 2: Trend and prospects in deaths (in 000's) by age and sex, India

Age	Actual Deaths					Projected death							
group		At	tual Dea	1115		Const	ant mort	ality scer	nario	Vary	ing mort	tality sce	nario
	1991	1996	2001	2006	2011	2016	2021	2026	2030	2016	2021	2026	2030
Person													
0-4	12	10	7	8	6	6	5	5	5	3	2	2	1
5-14	3	3	2	1	1	1	1	1	1	1	1	0	0
15-39	18	15	17	15	13	14	14	14	14	11	11	10	9
40-49	12	13	14	12	14	15	15	15	15	12	11	11	10
50-59	20	20	23	25	28	30	33	34	34	27	28	28	26
60+	125	125	156	153	163	194	232	276	311	180	205	233	252
0-14	15	13	10	10	7	7	6	6	6	4	3	2	2
15-59	50	48	54	52	55	58	62	63	64	51	50	48	46
All ages	190	186	219	215	225	259	300	346	381	234	258	283	300
Male													
0-4	7	12	4	4	3	3	3	3	3	2	1	1	1
5-14	2	4	1	1	1	1	1	1	1	0	0	0	0
15-39	12	20	10	9	9	9	10	10	10	8	8	8	8
40-49	8	19	10	9	10	10	10	10	11	9	9	9	8
50-59	14	31	15	19	19	21	23	23	23	21	21	21	21
60+	65	150	41	80	88	107	129	153	172	106	124	143	158
0-14	9	16	5	5	4	3	3	3	3	2	2	1	1
15-59	34	71	35	37	38	40	42	43	44	38	38	37	37
All ages	107	237	81	121	130	150	175	200	219	146	164	182	195
Female													
0-4	5	5	3	4	3	3	3	3	3	1	1	1	0
5-14	1	1	1	1	0	0	0	0	0	0	0	0	0
15-39	7	6	7	5	4	4	4	4	4	3	3	2	2
40-49	4	4	4	3	4	5	5	5	5	3	2	2	2
50-59	6	6	7	6	8	9	11	11	11	7	7	6	6
60+	60	55	36	75	75	87	103	123	139	74	81	90	94
0-14	6	6	4	5	3	3	3	3	3	1	1	1	1
15-59	17	16	18	15	17	18	20	20	20	13	12	11	9
All ages	83	78	59	95	95	108	126	146	162	88	94	101	104

Table 3: Trend and prospects in distribution of deaths (in 000's) by age and sex, Kerala

Table 4: Trend and prospects in distribution of deaths (in 000's) by age and sex, Maharashtra

Age	Actual Deaths				Projected Deaths								
group		Ac	lual Dea	uns		Constant mortality scenario			Varying mortality scenario				
	1991	1996	2001	2006	2011	2016	2021	2026	2030	2016	2021	2026	2030
Person													
0-4	162	134	107	84	58	48	47	46	46	35	24	16	12
5-14	23	20	21	16	9	8	8	7	7	6	4	3	2
15-39	74	75	98	91	84	88	92	92	89	75	71	65	60
40-49	41	47	58	51	56	63	69	77	84	52	51	50	50
50-59	67	67	68	78	77	88	104	117	125	78	79	77	74
60+	247	305	368	382	430	509	589	684	772	449	468	489	503
0-14	185	154	128	100	67	56	54	53	53	41	28	19	14
15-59	182	189	223	221	217	239	264	285	298	204	201	193	183
All ages	614	648	720	702	713	804	907	1023	1123	695	698	701	700
Male													
0-4	81	70	53	45	31	25	24	24	24	19	13	9	7
5-14	10	10	12	9	5	4	4	4	4	4	3	2	1
15-39	37	41	58	59	54	58	61	61	60	52	52	50	48
40-49	26	33	38	37	38	42	46	52	56	38	38	39	40
50-59	41	43	41	50	49	59	68	76	82	53	53	53	51

60+	137	162	191	192	235	271	312	362	413	244	257	271	285
0-14	91	80	65	53	36	29	28	28	27	23	16	11	8
15-59	105	116	137	146	141	159	175	189	198	142	144	142	139
All ages	332	359	393	391	412	459	515	579	639	409	416	424	431
Female													
0-4	82	64	55	39	28	23	23	22	22	16	11	7	5
5-14	13	10	9	7	4	4	4	3	3	3	2	1	1
15-39	37	34	39	32	30	30	31	31	29	23	19	15	12
40-49	15	15	20	15	18	21	23	25	28	14	12	11	10
50-59	26	25	28	29	28	29	36	41	43	25	26	25	22
60+	112	146	169	179	194	238	276	322	359	205	212	218	218
0-14	94	74	64	46	32	27	26	25	25	19	12	8	6
15-59	78	73	87	76	75	80	89	97	100	62	57	51	44
All ages	284	293	320	301	301	345	392	444	484	286	281	277	268

 Table 5: Trend and prospects in distribution of deaths (in 000's) by age and sex, Uttar

 Pradesh

Age	Actual Deaths					Projected deaths							
group		AU	lual Dea	1115		Constar	nt mortal	ity scena	rio	V	/arying	mortality	y
	1991	1996	2001	2006	2011	2016	2021	2026	2030	2016	2021	2026	2030
Person													
0-4	750	605	610	508	393	462	491	485	454	332	255	179	125
5-14	101	89	82	72	52	52	56	61	62	39	32	26	20
15-39	173	170	212	188	195	219	246	267	278	207	211	209	202
40-49	88	78	89	85	101	116	130	155	185	95	95	100	107
50-59	135	122	128	123	147	166	206	237	261	128	139	137	133
60+	439	504	443	594	659	723	840	987	1118	639	691	748	786
0-14	850	694	692	580	444	513	547	546	516	371	287	204	145
15-59	396	370	428	397	443	501	582	659	723	430	444	446	443
All ages	1685	1567	1564	1571	1546	1738	1969	2192	2358	1440	1422	1398	1373
Male													
0-4	346	287	294	250	203	237	252	249	233	197	160	118	86
5-14	76	40	36	36	27	27	29	32	32	22	19	16	13
15-39	80	79	97	100	108	123	140	154	161	127	139	149	151
40-49	56	47	55	53	68	77	87	104	126	63	64	71	78
50-59	84	68	76	74	92	109	131	149	163	87	93	93	92

60+	264	284	266	326	385	419	481	561	645	374	406	446	485
0-14	422	327	330	286	230	264	281	281	265	220	179	134	99
15-59	220	193	228	227	268	310	357	407	450	276	296	312	321
All ages	906	805	824	839	883	993	1119	1249	1360	870	881	892	906
Female													
0-4	405	318	318	259	189	224	239	236	221	134	95	61	39
5-14	55	48	46	37	25	25	27	29	30	17	13	9	7
15-39	94	91	116	89	87	96	106	113	117	80	71	60	51
40-49	33	31	34	32	33	39	43	50	59	32	30	29	29
50-59	52	53	52	49	55	57	75	88	98	42	46	45	42
60+	177	215	182	259	274	304	360	425	473	265	285	302	300
0-14	460	365	364	295	214	249	266	266	251	151	108	70	46
15-59	179	175	202	170	175	191	225	252	274	154	148	134	121
All ages	816	756	748	724	663	744	850	943	997	570	541	506	467

Figure 7: Estimated and projected number of deaths (in 000's), India and selected states, 1991-2030

Table 6: Decomposition analysis of the change in number of deaths from 1991 to 2011 into total population growth, population ageing and changes in age specific death rates, India

		All Ca	uses	
	Total	15-59	0-4	0-14
1991 deaths	8258	2225	2913	3341
Expected deaths with 2011 pop, 1991 pop age structure, 1991 death rates	11917	3212	4204	4821
Expected deaths with 2011 pop, 2011 pop age structure, 1991 death rates	12713	3683	3105	3588
2011 deaths	8575	2605	1466	1676
	44.2	44.4	44.2	44.2
Percentage change from 1991 due to population growth	44.3	44.4	44.3	44.3
Percentage change from 1991 due to population ageing	9.6	21.2	-37.7	-36.9
Percentage change from 1991 due to change in death rates	-50.1	-48.4	-56.3	-57.2
Percentage change from 1991 to 2011	3.8	17.1	-49.7	-49.8

Table 6 decomposes the trends into the contribution of total increase in population size, ageing of the population, and changes in age specific death rates. Population growth in India alone would have been expected to increase total deaths and adult deaths by 44.3 % from 1990 to 2011. Ageing of the Indian population contributed to 9.4 % increase in the total number of deaths from 1991 to 2011 and 21.2 % in the adult age group. Decline in age specific death rates accounts for 48.4 % decrease in adult deaths during the same period.

Conclusions:

Some important conclusions that could be drawn from this chapter are:

- 1. During 1991-2009, probability of dying has declined across the age group for both male and female. But it remains high in adult age group (15-59).
- 2. Probability of dying is relatively higher for male than their counterparts. Among the study states, regional variations had been observed with highest probability of dying in Uttar Pradesh and lowest in Kerala.
- 3. In India, number of deaths in adult ages had increased from 2.2 million in 1991 to 2.6 million in 2011 and remained similar by 2030 under varying mortality scenario. But it is expected to increase by 3.8 million under the constant mortality scenario. Similar

pattern is observed in Kerala, Maharashtra and Uttar Pradesh, though the level is different.

- 4. The gender differential in mortality is significant. The absolute number of male deaths is higher than that of female in all adult age group. Future projection also indicates the similar pattern of mortality differentials under both scenarios.
- **5.** The age distribution of deaths is gradually changing from the large base and the short top to the small base and the large top.

Appendix

Table D: I	Table B: Interpolated LEB using Mortpak, Inula, 2009-2050												
Year	Male	Female	Year	Male	Female								
2009	64.6	67.7	2019	68.1	70.9								
2010	64.9	68.0	2020	68.4	71.3								
2011	65.3	68.3	2021	68.8	71.6								
2012	65.6	68.7	2022	69.1	71.9								
2013	66.0	69.0	2023	69.5	72.2								
2014	66.3	69.3	2024	69.8	72.6								
2015	66.7	69.6	2025	70.2	72.9								
2016	67.0	70.0	2026	70.5	73.2								
2017	67.4	70.3	2027	70.9	73.5								
2018	67.7	70.6	2028	71.2	73.9								
2019	68.1	70.9	2029	71.6	74.2								
2020	68.4	71.3	2030	71.9	74.5								

Table B: Interpolated LEB using Mortpak, India, 2009-2030

Table C: Projected ASDR, India, 2016-2030

Age Group		2016	2021		2026			2030
	Male	Female	Male	Female	Male	Female	Male	Female
0-4	10.13	10.17	8.05	8.49	6.34	7.08	5.20	6.12
5-9	0.85	0.83	0.67	0.68	0.53	0.55	0.43	0.47
10-14	0.70	0.69	0.60	0.60	0.51	0.53	0.45	0.48
15-19	1.07	1.20	0.96	1.08	0.85	0.97	0.77	0.88
20-24	1.56	1.50	1.42	1.33	1.28	1.18	1.18	1.08
25-29	2.04	1.44	1.91	1.28	1.79	1.13	1.69	1.02
30-34	2.59	1.46	2.43	1.28	2.27	1.13	2.15	1.02
35-39	3.45	1.71	3.26	1.51	3.08	1.34	2.93	1.21
40-44	4.48	2.22	4.17	1.98	3.87	1.77	3.64	1.62
45-49	6.45	3.22	5.99	2.90	5.54	2.62	5.19	2.41
50-54	9.43	4.86	8.67	4.35	7.94	3.90	7.39	3.57
55-59	14.02	8.26	12.90	7.53	11.82	6.87	11.00	6.38
60-64	21.90	13.81	20.09	12.56	18.37	11.42	17.05	10.59
65-69	35.60	23.24	33.41	21.51	31.28	19.90	29.62	18.71
70+	74.81	61.05	70.68	57.83	66.63	54.79	63.44	52.47

Age Group		2016	2021		2026			2030
	Male	Female	Male	Female	Male	Female	Male	Female
0-4	1.61	1.02	1.26	0.72	1.00	0.51	0.83	0.39
5-9	0.16	0.07	0.12	0.05	0.09	0.03	0.07	0.02
10-14	0.21	0.13	0.18	0.10	0.15	0.08	0.13	0.07
15-19	0.48	0.28	0.44	0.23	0.40	0.20	0.38	0.17
20-24	0.91	0.42	0.85	0.35	0.80	0.30	0.77	0.26
25-29	1.35	0.39	1.28	0.32	1.23	0.27	1.18	0.23
30-34	1.51	0.51	1.41	0.43	1.31	0.36	1.24	0.31
35-39	2.42	0.71	2.32	0.61	2.23	0.52	2.16	0.46
40-44	3.02	0.80	2.82	0.67	2.64	0.56	2.51	0.49
45-49	5.12	1.23	4.85	1.03	4.60	0.87	4.41	0.75
50-54	8.60	2.22	8.28	1.93	7.99	1.67	7.77	1.49
55-59	12.42	4.14	11.89	3.68	11.39	3.27	11.03	2.98
60-64	21.25	6.93	20.69	6.08	20.16	5.33	19.76	4.80
65-69	29.98	12.31	28.81	10.88	27.72	9.62	26.90	8.72
70+	80.86	50.47	78.93	46.85	77.10	43.50	75.71	40.99

 Table D: Projected ASDR, Kerala, 2016-2030

Table E: Projected ASDR, Maharashtra, 2016-2030

Age Group		2016		2021		2026		2030
	Male	Female	Male	Female	Male	Female	Male	Female
0-4	4.26	4.04	3.05	2.73	2.14	1.80	1.59	1.26
5-9	0.31	0.26	0.21	0.16	0.14	0.10	0.10	0.06
10-14	0.40	0.34	0.32	0.25	0.26	0.19	0.21	0.15
15-19	0.66	0.84	0.56	0.69	0.46	0.56	0.40	0.47
20-24	1.21	0.93	1.09	0.75	0.98	0.59	0.90	0.49
25-29	2.27	0.87	2.27	0.69	2.26	0.53	2.26	0.42
30-34	2.22	1.00	2.05	0.81	1.89	0.65	1.76	0.54
35-39	3.83	1.25	3.76	1.02	3.68	0.82	3.62	0.68
40-44	4.22	1.47	3.90	1.17	3.58	0.92	3.34	0.75
45-49	5.74	2.40	5.26	1.97	4.79	1.60	4.43	1.33
50-54	7.25	3.62	6.41	3.01	5.62	2.48	5.03	2.10
55-59	11.71	6.44	10.44	5.46	9.24	4.58	8.35	3.94
60-64	18.76	11.75	16.75	10.09	14.86	8.57	13.44	7.47
65-69	29.39	18.86	26.39	16.22	23.56	13.79	21.42	12.02
70+	68.05	55.54	62.68	50.02	57.46	44.70	53.43	40.64

Table F: Projected ASDR, Uttar Pradesh, 2016-2030

Age Group	2016		2021		2026		2030	
	Male	Female	Male	Female	Male	Female	Male	Female
0-4	14.39	11.18	10.99	7.46	8.19	4.80	6.37	3.29
5-9	1.03	0.98	0.77	0.66	0.56	0.42	0.43	0.29
10-14	0.85	0.63	0.72	0.48	0.59	0.35	0.50	0.27
15-19	1.36	1.17	1.25	0.91	1.14	0.70	1.06	0.55
20-24	2.17	1.72	2.10	1.34	2.03	1.03	1.97	0.82
25-29	2.27	2.03	2.17	1.67	2.06	1.34	1.98	1.12
30-34	3.24	1.87	3.19	1.50	3.15	1.17	3.11	0.95
35-39	4.32	2.20	4.27	1.83	4.21	1.50	4.16	1.26
40-44	4.87	2.47	4.49	2.03	4.12	1.63	3.82	1.35
45-49	6.76	3.75	6.15	3.20	5.55	2.70	5.08	2.33
50-54	9.66	5.37	8.65	4.45	7.66	3.63	6.91	3.05
55-59	14.06	8.05	12.52	6.68	11.04	5.46	9.91	4.58

Figure H: Age distribution of Deaths in UP, 1991, 2011 and 2030

Figure I: Age distribution of Deaths, Maharashtra, 1991, 2011 and 2030

