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Introduction

Relatively little is known about the large scale spatial structure of personal
networks. Available information is limited. Some systematic surveys have
evaluated the length of personal network ties, and related the extent to individual
characteristics of egos and alters. These studies, however, have tended to collect
distance, rather than absolute geographic location. Thus, while we know about the
relationship between networks and relative location, such as geographic distance
and proximity, we know relatively little about absolute location, and about the
physical description of American space and personal networks through that space.

Other studies have explored the absolute location of network, through volunteered
or nonspecific network data, such as networks of Facebook users or phone calls.
Such data sources are large but incomplete. The demographic and socioeconomic
biases of these networks can be large. Furthermore, we know relatively little about
the nature of those ties. People’s networks are not homogeneous, but they are
heterogeneous and multiple.

We present a descriptive analysis of the spatial structure of personal networks
across the Western United States. This analysis is based on a unique sample survey
that collected information from respondents about the structure of various personal
networks, as well as information about the spatial location of themselves and their
network alters. This survey used an online format, with a traditional solicitation via
mail.

We are able to display geographic space continuously across the Western United
States. We show here descriptive analysis based on statistical clustering and visual
representation of network, in order to empirically evaluate the structure of personal
network through large geographic spaces. Compared to much of the previous
network research, which often concentrates on small geographic scales, such as the
neighborhood, this sample is better able to analyze network structure over large
geographic scales, such as the states and regions within the Western United States.

The rest of this paper is structured as follows. First, we will describe the survey
sample used here. We will describe the methods used, including the data
preparation, as well as the statistical and visual methods used to characterize
network structure. We then describe the empirical results that are obtained from
applying these methods to the sampled data.



Data

Data were collected between 2012 and 2013. A fixed sample size was distributed
across all census blocks in the Western United States, with inclusion probability
proportional to the geographic size of the census block. Sampled individuals were
randomly selected from a list of all adults with a mailable address. Individuals were
contacted with a personalized letter inviting them to participate in the online
survey. This initial mailing contained a $2 incentive, and participants were told that
they would receive an additional $10 incentive upon completion of the survey.
Participants were sent a reminder postcard one week after the initial mailing, and a
reminder letter one month after the initial mailing (Dillman 1991).

Participants were given a unique personal identification number, which they could
then use to log in to the online survey. The survey instrument consisted of basic
demographic component, combined with name generators for various types
networks. For each network name generator, respondents were allowed to
nominate as many people as they would like (free response). Once a person was
identifies, a check box was placed on the screen, and the person because
automatically eligible for nomination in subsequent name generators.

Respondents were then asked to identify the residential addresses for each
individual that was identified. Addresses were then geocoded to latitude and
longitude by the Google Maps API. A simple map of the location was then displayed
to the respondent, and the respondent was presented with the opportunity to alter
the location.

After the survey was completed, an automated computer script obfuscated the
locations so that they were not available to the researchers. Precise addresses (i.e.
those with street and number) were obfuscated to pairs of block; while less precise
addresses (for example, if a city was provided but not street address) were
geocoded to the centroid of the corresponding unit. All study procedures were
approved by the appropriate Institutional Review Board.

The final survey included 3,370 responses, for a response rate of 18%. The
sampling bias was similar to other forms of mail recruitment, with a median age that
is higher than that of the general population.

Methods

Data Preparation

We first divide the Western United States Study region into grid cell of 1 degree
latitude by 1 degree longitude and aggregate the egos and alters into these cells. 1
degree latitude and longitude was chosen because it is an easy number quantity to
map, and because it was large enough that most grid cells contained at least 10
respondents. Furthermore, many respondents recorded the place name for
themselves and their network alters, but not a precise location. The 1 degree grid
size is large enough that this locational uncertainty is not problematic for research.



For each pair of grid cells, we then calculate an estimated tie volume Vjx between the
cells. The tie volume is calculated by weighting the observed links between the cells
by the probability that the link is in the sample (i.e. by the probability that that one
of the two individuals is selected as a respondent).

Spectral Clustering

We use the method of spectral clustering in order to empirically identify regions or
communities in the Western US. Spectral clustering is increasingly used []. Spectral
clustering is based on an eigenvalue (e.g. principal components) decomposition of
the graph Laplacian matrix. Graph Laplacians are used to define many properties of
network similarity matrices. There are two types of graph Laplacians. Let V be the
matrix of tie volumes, and D be the diagonal degree matrix, with diagonal values
d_{jj} = \sum_j V_{jk}=\sum_k V_{jk}. The un-normalized graph Laplacian is L=(D-
V), and the (random walk) normalized graph Laplacian is L=D”{-1}(D-V). The
random walk Laplacian derives it's name because the off-diagonal elements L_{lk}
can be interpreted as the probabilities that an graph edge originating in region 1 is
destined for region k.

We conduct spectral clustering on the normalized graph Laplacian. Once the
normalized Laplacian is calculated, we then extract the smallest k eigenvectors.
(The very smallest eigenvector is constant, and it excluded from selection). The
smallest eigenvectors correspond to the dominant trends, or modes, in interaction.
The smallest 12 eigenvectors are plotted in Figure 1.

Hierarchical Bayesian Clustering
We used hierarchical Bayesian clustering in order to cluster the 6 dominant
eigenvectors. The model we fit is:

Yvi ~ Z ZicN<H07 ZC)
ceC

zic = 1 if 7 in cluster ¢; 0 otherwise

zie ~ Categorical(my, 72, ..., 7¢)

where C is the number of clusters. A uniform prior over the simplex was placed on
the membership probabilities i, and a diffuse Gaussian prior was placed on the
cluster centers u. The covariance matrix X was assumed to be constant and known
for all clusters. Label switching can be a notorious problem in Bayesian clustering
(Jasra 2005). Base don preliminary analysis of the eigenvectors, we specified
constraints on the C major cities (i.e. one major city per cluster) to prevent them
from switching labels. After implementing this, cluster switching was not a problem
in the posterior chains. Thus, our clustering algorithm is a semi-supervised
classification problem. Work is continuing to evaluate the robustness of the clusters
to these modeling decisions.



The model was fit using the Stan software package (Stan Development Team 2013).

Force-Directed Graph Layout

In contrast to the spectral clustering method, which identifies network communities
or clusters based on the similarity of their flows, the force directed graph layout is
intended to depict the location of the network in a 2-dimensional, non-geographic
space, so that strongly connected nodes are near to each other, and weakly
connected nodes are far apart. We use here the Fruchterman-Reingold method, in
which the tie volumes create “attractive” forces that bring nodes together, and in
which “repulsive” forces keep nodes well separated in space. Force-directed layout
methods must be used with some discretion, however, because it is not always
possible to suitably represent the distances in a graph as distances in 2-dimensional
space. This model was fit in R using the igraph package (Csardi et al 2006).

Results and Discussion

Clustering Analysis

The 12 dominant eigenvectors of the network graph is shown in Figure 1. The
graphs are to be read in consecutive order; each graph identifies additional patterns
conditional on those identified in the previous graph. The dominant trend in the
network is the separation of personal networks between the Pacific Coast and the
Rocky Mountain West. The interpretation of this graph is that any person living
along the Pacific Coast, is more likely to have a connection elsewhere along the
Pacific Coast than in the Rocky Mountain West. The converse holds for those living
in the Rocky Mountain West.

This is not simply a factor of geographic separation. If it were a factor of geographic
distance, then the largest factor would be a North-South division since that is the
largest geographic extent. Thus, there is clear network separation between the
Pacific Coast and the Rocky Mountain West. Presumably, this is partly caused by the
low population densities throughout the intervening inter-mountain West, but this
hypothesis is tested here.

The remaining maps identify successively less dominant trends in the network
structure, apparently selecting out differences between, in succession, Colorado,
New Mexico, Utah, and the Pacific Northwest, and Arizona and Northern California.
The higher eigenvectors are increasingly dominated by local deviations, which my
be due outliers and noise. We choose to concentrate on clustering analysis of the
first 6 eigenvectors.

Results from the Bayesian Gaussian Mixture Model are shown in Figure 2. We show
here the result using 6 eigenvector dimensions and C=7 clusters, but results from
lower dimensions and clusters are available on request. The cluster analysis shows
relatively well defined clusters, apart from regions in Nevada and Idaho, which are
not robustly identified with a cluster. The analysis with fewer eigenvectors and
clusters suggests that the division between 4 clusters in the Mountain West clusters



explains more of the network structure than the division between the 3 Pacific Coast
Clusters.

The clear division along some state lines is interesting. For example, the space along
the Arizona - New Mexico is very sparsely settled. Yet, our samples include grid
cells on either side of the border, in which we have at least ten respondents in each
grid, and, which appear to be robustly assigned to a cluster within their state. The
persistent effect of some state borders needs to be assessed more fully. Future
research will explore simulating populations with the correct population density,
but with the null hypothesis of no border effects, in order to more robustly test this
finding (see, for example, Butts and Acton 2011; Butts et al 2012)

Graph Layout

The force directed graph layout is shown in Figure 3. The force-directed algorithm
is an iterative method that attempts to place the locations on a surface, so that the
places with strong ties are near to each other, and those with weak ties are far apart.
We have labeled the primary city in each of the 7 clusters. In general, however, we
see that there is pretty good visual separation of the 7 clusters, even though this
method is not a clustering technique. Los Angeles and the Southern California
cluster points are near the center of the graph. Each of the other cluster is located
roughly like a flower petal away from the center. The dominant cities in each cluster
are more centrally located, with a position toward the center of the graph. The
smaller places are not labeled, however, the periphery of the graph is dominated by
small places.

Conclusion

We have created a representative sample of personal networks throughout the
Western United States. A distinguishing characteristic of this sample is the
oversampling of rural places, allowing us to conduct a thorough spatial analysis of
the network throughout the study region, without restriction to the more populous
places. We are thus able to conduct a systematic analysis of regionalization and
connection across space. We believe that these results largely support to “folk
wisdom” and lend empirical evidence to our understanding of space and American
Society. Specifically, we find that the nearer places are more connected, but so are
larger places. Thus, we see that large places are near to each other based on the
number of connections between them, but that small places are more connected to
their local neighborhoods.

Future research will explore whether the spatial characteristics of the American
social network vary significantly with demographic and social characteristics, such
as age and education.
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Figure 1. The dominant eigenvectors of the network graph for the Western United States.



Figure 2. Gaussian Mixture Model analysis of the Western US network graph, with C=7 clusters.
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Figure 3. Force Directed Graph Layout of the Western US Network. The coloring is based on the clusters
depicted in Figure 2. The primary cities in each cluster are labeled by their 3 letter airport code, but this
in no way suggests a graph based on air travel.
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