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Introduction 

 

Mortality is the quintessential measure of the health of a population, and large 

gains in human life expectancy over the past 150 years are evidence of the important 

relationship between social context and health.  While there is certainly variability in 

longevity between populations, there is also wide variation in longevity within 

populations.  Understanding the determinants of this heterogeneity is essential to 

understanding the processes of aging and health of a population.  But how much of this 

variation is determined by genetic factors and how much is determined by the 

environment?  While the question of heritability of longevity is not new, with heritability 

estimates of longevity ranging from 0 to 0.3 (Kerber, O'Brien, Smith, & Cawthon, 2001), 

we seek to determine if heritability estimates vary between subpopulations and explore 

the possibility of gene-environment interactions (GxE).  By examining sources of 

variation in heritability estimates, we can illuminate factors that modify the expression of 

genetic predisposition in a population.   

We will investigate heterogeneity in the genetic basis of longevity by assessing 

the phenotypic correlation between relatives.  Variance components and heritability 

values will be generated using a large genealogical database with information on family 

structure as well as measures of the broader environment.   This study will examine the 

relationship between social context and the amount of additive genetic variance in adult 

life-span and exceptional longevity using data from the Utah Population Database 

(UPDB), a rich source of linked population-based information for demographic, genetic, 

and epidemiological studies.  The sample used in this study consists of 20,120 individuals 



from 802 three generation pedigrees.  This analysis has two goals: 1) estimate the 

heritability of longevity after age 30 as well as exceptional longevity in a population 

using methods designed for use in multigenerational pedigree information; 2) test for 

differences in heritability estimates of life-span in populations stratified by environmental 

exposure.   

  

Background 

Heritability of Longevity 

Over the past few decades, demographers have broadened the focus of work in the 

demography of aging from a population aging perspective (i.e. measures of change in 

population age structure) to include a perspective that integrates health and biological 

explanations with traditional demographic and social theories of aging to explain 

heterogeneity in health and mortality within and between populations (Olshansky, 

Carnes, & Brody, 2002; Siegel, 2011; Vasunilashorn & Crimmins, 2008).  While it is 

widely accepted that life-span is determined by a combination of genetic, social and 

physical environment, and stochastic factors, the interdependent and dynamic role of 

genes and environment is still not well understood.  This may be partially due to fears of 

genetic determinism within the field of sociology (Shostak & Freese, 2010), the divergent 

paths of genetics and demography (Adams, 1990), and the difficulty of assessing the role 

of genes and environment biomarker data.    

Longevity is a complex trait, determined by a multiplicity of genetic and 

environmental factors, each of which contributes to a potentially small amount to 

phenotypic variation.  The genetic variation that is the natural background is a shortened 



life-span (relative to exceptional longevity) and exceptional longevity is the result of a 

mutations.  Genes affecting longevity have been parsed into two categories described as 

gerontogenes: genes that have a negative effect on longevity and longevity-assurance 

genes that promote longevity (Christensen, Johnson, & Vaupel, 2006).  Findings from the 

New England Centenarian Study (NECS) have suggested that supercentenarians do not 

lack gerontogenes, but have longevity assurance genes that can counter the deleterious 

effects of genes and environment as well as slow the rate of aging and lead to delayed 

onset of age-related disease (Sebastiani et al., 2012).  It is also believed that longevity 

mutations increase the ability to handle stress and robustness (Christensen et al., 2006).  

The proportion of variation in life-span due to genes is moderate, which can be illustrated 

by the fact that there is variation in life-span between monozygotic twins (Herskind et al., 

1996).   

In summary, longevity is determined by a complex relationship between both 

genes and environment.  For a more complete understanding of population heterogeneity 

in life-span and the forces behind it, one must not only understand the average 

contribution of genes and environment within a population toward explaining variation in 

adult mortality, but uncover the factors that influence patterns of variation within the 

population.   

At the most basic level, phenotypic variation can be partitioned into additive 

genetic variance and general environmental variance.  Additive genetic variance is the 

deviation from the average phenotype, or trait, in the population that is due to the 

inheritance of a particular allele and that allele’s effect on the phenotype.  General 

environmental variance can then be described as the remaining variance that cannot be 



attributed to genes.  The proportion of variation due to inheritance of a particular allele is 

not fixed across all environments because the relationship between genotype and 

phenotype may vary by environment, a phenomenon known as phenotypic plasticity.  

Narrow sense heritability is a population level statistic that describes the amount of total 

phenotypic variation (VT) that can be attributed to additive genetic variation (VA) in the 

population (h
2 

= VA/VT).   The polygenic model can be used to partition variation into 

genetic and residual environmental effects.  Because it is a population level statistic, it is 

important to keep in mind that it not a property of individual traits.  When h
2
equals zero, 

it indicates that all phenotypic variation within a population can be explained by 

individual differences, while an h
2 

of one indicates that all the phenotypic variation is 

explained by genetic differences.  This is not to say that high heritability suggests little 

environmental effect on the phenotype.  When h
2
 is elevated the environment may 

uniformly contribute to the expression of the trait and therefore contribute little to 

differences between people.  It has been shown that heritability of traits can vary across 

subpopulations (Jason D. Boardman, 2009; Jason D Boardman et al., 2012; D. C. Rowe, 

Almeida, & Jacobson, 1999).  But how much of the population heterogeneity in life-span 

is determined by genetic factors? 

There is evidence of the presence of familial clustering of longevity over many 

generations and across diverse populations, suggesting that there is a genetic or familial 

component to successful aging and longevity (Christensen et al., 2006; C. E. Finch & 

Tanzi, 1997; Herskind et al., 1996; Kerber et al., 2001; T. Perls, Kunkel, & Puca, 2002).  

The longevity literature has described the genetic and environmental contribution to 

mortality as being divided into one-third and two-third proportions, respectively (C. E. 



Finch & Tanzi, 1997; Siegel, 2011).  It has also been suggested that 50% of the variation 

in life-span after age 30 can be ascribed to attributes (genetic and non-genetic) that are 

fixed prior to that age (Yashin & Iachine, 1997), and that genetics plays a stronger role 

with advancing age (Hjelmborg et al., 2006; Montesanto, Dato, Bellizzi, Rose, & 

Passarino, 2012; Vaupel et al., 1998) (see J. W. Rowe and Kahn (1997) for a dissent from 

this view).  If the proportion of variation in life-span that can be explained by genetic 

factors varies by age, is it also conditioned by social context?  And if so, does this 

conditioning vary by age? 

 

Conceptualizing the Relationship between Social Environment 

And Heritability of Longevity 

Attempting to understand the genetic component of longevity without considering 

how it may be modified by specific environmental factors may not be a fruitful approach 

to gaining insights into the heritability of this complex trait (Petronis, 2010).  The 

heritability of certain phenotypes may vary throughout the life course (Turkheimer, 

Haley, Waldron, D'Onofrio, & Gottesman, 2003) and by gender (Visscher, Hill, & Wray, 

2008).  Given that humans are constantly interacting with the environment and the 

environment has the ability to alter gene expression, we must also understand how 

environmental influences might modify the heritability of longevity.  Accordingly, in this 

analysis, comparisons of heritability will be made between three subgroups of the 

population based on: 1) religious involvement; 2) early disease and nutritional 

environment; and 3) family environment during childhood.   



This study assumes that the same genes affect longevity across environments 

within a population, but certain attributes of the environment serve to moderate the effect 

of genes on phenotypic variation.  Shanahan and Hofer (2005)  have presented a 

framework for gene and social context interactions that has been used to explain the 

relationship between the social environment and health behaviors (Jason D. Boardman, 

2009; Jason D Boardman et al., 2012).  We present a slightly modified version that also 

utilizes concepts presented by Hoffmann and Merilä (1999) as well as new modifications 

to help formulate our hypotheses.   

Under Shanahan’s framework for gene-environment (GxE) interactions, the 

environment is conceptualized as social context (Shanahan & Hofer, 2005).  Four 

perspectives, described in detail below, can be used to depict how the social environment 

might affect heritable variation; triggering, compensation, social control, and 

enhancement.  Figure 4.1 shows a modified version of a schema presented by Sebastiani 

et al. (2012) describing the genetic components of aging.  Sebastiani has hypothesized 

that individuals living to exceptional ages have gerontogenes, but the longevity assurance 

genes counter the deleterious effects of genetic and environmental factors.  Panel A 

shows the proportion of total phenotypic variance (VT) that is attributable to additive 

genetic variance (VA) and environmental variance (VE), where the phenotype is longevity 

after age 30.  We show that in a normal environment where there is no GxE interaction 

(panel A), individuals with shorter life-spans have higher heritability of gerontogenes and 

individuals with exceptional life-spans have higher heritability of longevity assurance 

genes.   



A triggering effect refers to an environment that interacts with personal 

predispositions to a diseased state and shortened life-span through, for example, 

environmental stressors or other factors that induce a biological change.  Panel B in 

figure 4.1 shows the hypothesized triggering GxE interaction in which an adverse 

environment directly affects the phenotype.  When triggering mechanisms are responsible 

for environmental differences in heritability, we expect to see a decrease in average 

longevity in adverse environments and an increase in additive genetic variance.  This is 

because the environment leads to phenotypic expression that would otherwise be 

dormant.  This relationship may change with exceptional longevity because selection 

mechanisms may change the heritability of a trait over time. If the genetically frail 

individuals are selected out of this population at an earlier age, the surviving population 

may be comprised of more robust individuals with a genetic predisposition for 

exceptional longevity (i.e. longevity assurance genes) (Hawkes, Smith, & Blevins, 2012), 

leading to higher levels of heritability of exceptional longevity in environments 

detrimental to health.  Therefore, under this formulation, we expect that individuals 

exposed to an unhealthy environment during childhood will have higher heritability of a 

shorter life-span compared to those living in more advantageous circumstances.  This 

may also translate into higher heritability of exceptional longevity because only the 

robust in an unhealthy environment survive to exceptional ages.   

The second type of GxE interaction is compensation.  According to this 

perspective, in normal and adverse environments the predisposition to a diseased state 

and shortened life-span is realized but not in enriched settings.  The expected change in 

additive genetic variance in an enriched environment is presented in panel C of figure 



4.1.  The compensation GxE perspective assumes that the continuous exposure to a 

healthy environment prevents the expression of a genetic diathesis that predisposes an 

individual to premature death.  Unlike the triggering mechanism, the relationship 

between environment and phenotype is not causal, but due to environmental variation.  

Therefore, we would expect to see an increase in average life expectancy in an enriched 

environment with lower additive genetic variance for the longevity phenotype.   

 Social control is the third GxE model.  This interaction is not presented in figure 1 

because the expected outcomes are similar to those presented in panel C.  Heritability of 

longevity may be attenuated in environments with high social control because social 

norms and structural constraints place limits on choices, and, therefore the environment 

suppresses phenotypic variance.  This is similar to the evolutionary argument of 

canalization, which argues that selection favors suppression of quantitative traits in 

constant and structured environments, but the genotype maintains a potential for 

expressing certain phenotypes under particular environmental conditions (Hoffmann & 

Merilä, 1999).  Thus, involvement with a religious institution that maintains strong social 

norms for health related behaviors such as alcohol consumption, smoking, social support, 

and dietary restrictions may lead to increased longevity and exceptional longevity for all 

members of the group and suppress genetic predispositions for disease.  In this situation, 

we expect to see increased longevity and exceptional longevity for active religious 

participants with lower levels of heritability compared to non-participants.     

 The enhancement model of GxE is presented in panel D of figure 1.  This is 

similar to the social control mechanism, but rather than suppressing a predisposition to a 

shortened life-span, social context can serve to enhance genetic predispositions for 



longevity.  Individuals in advantaged and organized social settings may be more apt to 

realize their genetic potential for longevity, while disadvantaged environments lead to 

unrealized potential.  For example, an environment of undernutrition or high levels of 

exposure to infectious agents may lead to physiological changes that alter an individual’s 

ability to reach their genetic potential (D. Barker, 1995; D. J. P. Barker et al., 1993; 

Eileen M. Crimmins & Finch, 2006).  Here, we would expect to see mean differences in 

survival between environments and higher heritability of life-span and exceptional 

longevity in environments more advantageous for health and longevity.   

 In this paper, we build on a body of literature that examines the heritability of 

longevity by comparing heritability of longevity and exceptional longevity between sub-

populations exposed to different environments that are known to affect adult mortality 

risks.  Using the GxE perspectives discussed above, we compare the heterogeneity of 

genetic effects by environment.  We expect to see differences in the heritability of 

longevity between environments characterized as salubrious or unhealthy.  The GxE 

categories of triggering, compensation, and social control predict higher levels of 

heritability of longevity in environments less beneficial to health, while the enhancement 

typology predicts increased heritability of longevity in healthy environments.  We can 

make generalizations about what type of GxE interaction leads to the observed patterns, 

but the exact mechanism is not testable under this formulation.  Comparing the 

components of variance between environments will add to the understanding of the 

relative importance of both genes and environment in determining longevity.   

 

 

Methods 

Data 



 The majority of life-span epidemiological studies examine health influences of 

early and adult life conditions with relatively modest sample sizes, particularly given the 

complexity of the phenomena and the manifold exposures and outcomes. This study 

utilizes data drawn from the Utah Population Database (UPDB). The UPDB is one of the 

world’s richest sources of linked population-based information for demographic, genetic, 

and epidemiological studies. UPDB has supported biodemographic studies as well 

numerous important epidemiological and genetic studies in large part because of its size, 

pedigree complexity, and linkages to numerous data sources. In the mid-1970s, over 

185,000 three-generation families were identified on “Family Group Sheets” from the 

archives at the Utah Family History Library.  These families have been linked into 

multigenerational families and the full UPDB now contains data on nearly 7 million 

individuals due to longstanding and on-going efforts to add new sources of data and 

update records as they become available.   

Mortality data are fundamental to the study of exceptional longevity.  Information 

on deaths prior to 1904 comes from genealogical records obtained from the Utah Family 

History Library and linked to other records within the UPDB.  All Utah death certificates 

are available from 1904 to the present.  The UPDB also links to the U.S. Social Security 

Death Index (SSDI) for the years 1936 – 2011.  The SSDI records provide information on 

deaths based on Social Security records regardless of place of death and are linked to the 

UPDB.  The unique combination of genealogy, death certificates, and SSDI data provide 

wide spatial and temporal coverage for both the fact and date of death.    

The sample used to construct measures of longevity comprises all individuals in 

the UPDB born between 1850 and 1927.  We selected 1927 as the maximum birth year to 



allow us to observe mortality to at least age 85 for the youngest members of the cohort.  

To minimize variability in survival unrelated to aging and based on other evidence of the 

fixed attributes related to life-span after age 30 (Yashin & Iachine, 1997), we will model 

mortality beginning at age 30 (Hawkes et al., 2012).  We identified 685,949 individuals 

who met the criteria listed above.  Of those, approximately 9% (n=64,258) were right 

censored and 91% (N=621,961) had vital status follow-up information from family 

history group sheets, Utah death certificates, or linked Social Security Death Index 

(SSDI) information.  The gender distribution of the sample was 52.5% male and 47.5% 

female.   

Using individuals from the baseline survival analysis, we selected 111,324 three-

generation families.  Table 4.1 shows the restrictions imposed at the family level.  We 

attempted to select families with the highest data quality and the most complete 

information. As a result, 31,322 families were excluded from the analysis because at least 

one grandparent had no information in the UPDB.  All founding pedigree members were 

required to have a birth year greater than 1850 (Utah was settled in 1847) and all 

members of the family were required to be born before prior to 1928, which allowed us to 

observe the youngest members of the cohort to age 84.  On average, these families had 

four individuals in the first generation (by definition), 13 individuals in the second 

generation, and 19 individuals in the third generation (range = 1 to 83).  Pedigree size 

ranged from 7 to 109 members. The final sample consisted of 802 three-generation 

families with 20,120 members with a calculated longevity measure and information on 

family of origin.  To study exceptional longevity, a nearly deceased cohort is needed.  



Therefore, individuals born between 1914 and 1927 were excluded from the exceptional 

longevity sample, yielding a sample of 14,618 individuals for these analyses.   

 

Measuring Early and Mid-Life Environments 

 

Both early and mid-life conditions will be considered as possible social context 

that may modify phenotypic expression.  To simplify both the measurement and 

conceptualization of the environment, each environment is treated as a simple dichotomy, 

comparing salubrious environments to those that are less advantageous to health.  We 

will compare the heritability of longevity by religious participation, infant mortality rate 

(IMR) in the family of origin, childhood mortality rate (CMR) of the family of origin, 

and number of siblings.   Justifications for each as the basis for deleterious and beneficial 

environments are described in turn below. 

Religious involvement in general is associated with increased life expectancy 

(Hummer, Rogers, Nam, & Ellison, 1999).  It is not surprising that active affiliation with 

the Church of Jesus Christ of Latter-day Saints (LDS or Mormon) church is also 

associated with increased life expectancy (Enstrom & Breslow, 2008).  Individuals 

actively affiliated with the LDS church are more likely to abstain from alcohol and 

tobacco use, fast once a month, and participate in church related social activities (Mineau, 

Smith, & Bean, 2002).  Therefore, affiliation with the LDS church  will be treated as a 

social environment with defined healthy lifestyle norms for men and women.  The UPDB 

contains information on baptism dates from family history records, which were used to 

classify individuals as followers of the LDS church.  Individuals baptized as members of 

the LDS church before the age of 30 are considered followers of the LDS Church.  



Individuals will be parsed into two environments: 1) LDS church involvement; and 2) no 

LDS church involvement.     

 Early life health can have long-term consequences on later life health and 

mortality (Elo & Preston, 1992; Smith, Mineau, Garibotti, & Kerber, 2009).  While it is 

difficult to obtain a measure of early life exposure to disease and other adverse 

circumstances, we can use mortality outcomes of siblings as a sentinel for early life 

circumstances.  Post-neonatal mortality (the first year of life excluding the first 28 days) 

for our cohorts of study (1850 – 1927) is closely related to viral and bacterial disease, 

malnutrition, and income (B. K. Finch, 2003; McKeown, 1976; Preston & Haines, 1991).  

A similar argument has been made for childhood mortality by Eileen M. Crimmins and 

Finch (2006), who argue that birth cohorts with lower childhood mortality have increased 

longevity.  As such, we use the death of a sibling during the first year of life (IMR in 

family of origin) or between ages one and five (CMR in family of origin) as indicators of 

an adverse childhood environment.  Neonatal deaths, deaths within the first 28 days, and 

stillbirths are not included in our final measure of IMR because these deaths are likely 

due to endogenous causes and may not represent a family environment marked by 

disease, an assumption most likely to be true for the years considered here.  We consider 

infant and childhood mortality as distinct environments because it has been suggested 

that the determinants of infant and childhood mortality decline over time differed during 

this period (Wolleswinkel-van den Bosch, van Poppel, Looman, & Mackenbach, 2000).  

Individuals with one or more infant or childhood death in their family of origin (i.e. death 

of a sibling) were considered to be in an environment of high infant or childhood 

mortality respectively.   



 Sibship size (number of siblings) has been shown to be positively associated with 

lower educational achievement and unhealthy lifestyle choices (Downey, 1995; Hart & 

Davey Smith, 2003).  Sibship size may also be related to exposure to infectious diseases, 

with children from large sibships having a greater risk of contracting an infectious 

disease (Hart & Davey Smith, 2003).  However, a strong association between sibship size 

and adult mortality has not been demonstrated in all studies assessing this relationship 

(Smith et al., 2009).  The definition of large sibship was derived empirically as having 7 

or more siblings (75
th

 percentile for the sample).   

 While sex is inherently a biological trait, sex differences in life expectancy are 

determined by both social and biological factors (E.M. Crimmins & Saito, 2001; Lindahl-

Jacobsen et al., 2013; Rieker, Bird, & Lang, 2010).  Sex differences may exist in the 

effects of early life conditions on later life health.  Male fetuses have higher mortality 

rates than female fetuses, a disadvantage that continues throughout the life course 

(Kraemer, 2000).  Earlier studies have found slight differences in the heritability of 

longevity between males and females, with males having higher heritability than females 

(Herskind et al., 1996).  Accordingly, we test for environmental differences in the 

heritability of longevity by sex.   

 

Definition of Longevity 

 

The mortality schedule for individuals born between 1850 and 1927 has changed 

considerably. Longevity, therefore, defined simply as years lived after age 30, is not 

appropriate because it is not directly comparable across birth cohorts.  While much of the 

improvement in life expectancy seen during this period was due to improvements in 



infant and child mortality, there were also gains in adult mortality.  Cohort life tables for 

Utah show that individuals born in 1850 and surviving to age 30 could expect to live an 

additional 40.5 and 39.5 years for females and males respectively, compared to 53.1 and 

48.5 years of additional life after 30 for individuals born in 1920 (Lindahl-Jacobsen et al., 

2013).  Therefore, to de-trend the data, we define longevity as the difference between an 

individual’s attained age (y) and the age to which that individual was expected to live 

(median predicted age of death conditioned on surviving to 30,   ̂) according to a model 

that incorporates two basic determinants of life-span: gender and birth year.  Therefore, a 

longevity score (LS) is simply the difference between these two values, y -  ̂.  The 

baseline survival models used to determine  ̂ are described below. This approach is 

similar to one taken by Kerber et al. (2001) in calculating a measure of familial excess 

longevity using Utah genealogies.   

Previous studies have suggested that the heritability of longevity increases with 

age (Hjelmborg et al., 2006; Yashin & Iachine, 1997), and may perhaps be the strongest 

for those surviving to the latest ages (Atzmon et al., 2004; Gudmundsson, Gudbjartsson, 

Frigge, Gulcher, & Stefánsson, 2000; T. T. Perls, Bubrick, Wager, Vijg, & Kruglyak, 

1998).  Exceptional longevity can be defined as an exceptionally long life-span compared 

to other individuals experiencing the same historical influences (birth cohort) (Michael 

Anson et al., 2012).  As done in previous studies, we will define the exceptional 

longevity (EL) phenotype as living to exceptional age, and explore differences in 

heritability of survival to the 90
th

 and 95
th

 percentile based on the baseline hazard models 

(Kerber, O'Brien, Boucher, Smith, & Cawthon, 2012).   

 



Constructing Baseline Survival Models 

We assume a parametric form for the survival distribution and a generalized class 

of accelerated failure time (AFT) models, the extended family of generalized Gamma 

models.  Unlike proportional hazard models, AFT models assume that the effect of 

covariates is multiplicative with respect to survival time.  We test the fit of the 

exponential, Weibull , log-normal, log-logistic, and gamma  models.  These models were 

selected because they provide a simple point estimate for duration that generally fits the 

observed data for adult mortality.  While the Gompertz model is appropriate for modeling 

human mortality between 30 and 85 (Olshansky and Carnes, 1997), this study is 

concerned with exceptional longevity (past the age of 85) and therefore this model was 

not considered.  The nested structure of the family of generalized Gamma models 

(exponential, Weibull, log-logistic, and gamma) allows for use of the likelihood ratio test 

to assess model fit.  The Akaike information criterion, or AIC, can be used to test the fit 

of non-nested models.  Final models were selected for the construction of the longevity 

measures based on model fit. 

The full sample of 685,949 individuals born between 1850 and 1927 meeting the 

sample criteria described in the data section above were used to estimate survival time for 

individuals surviving to age 30.  Models were stratified by gender and included two 

covariates, birth year, and birth year squared.  All models showed a significant positive 

relationship between birth year and survival.  The generalized Gamma model proved to 

be the best fit based on likelihood ratio test (p<0.001) and AIC.  The shape and scale 

parameters in the generalized gamma model are also significantly different than “0” and 

“1”, implying that the fitted distribution is different from the Weibull, log-normal, and 



exponential models.  The change in the predicted 50
th

 and 90
th

 percentile by model and 

year is displayed in figure 4.2.  Panels A and B show the trend in predicted median and 

90
th

 percentile longevity respectively for men and panels C and D display the estimates 

for women.  The exponential model does not fit the data well and therefore the results are 

not shown.  These figures show that the log-normal and log-logistic models, which 

provided the worst fit based on the AIC statistic, also predict out of range values for the 

90
th

 percentile.  Both the Weibull and generalized gamma model provide sensible 

estimates.  Therefore, the generalized gamma model was used to estimate  ̂ and 

consequently LS.  

 LS was defined as the observed minus the expected life-span for all deceased 

individuals.  The UPDB contains multiple sources of linked records that can be used to 

create a last observed date.  Therefore, we know that individuals without a death record 

were alive until their last observed date in UPDB.  The observed life-span for individuals 

born after 1905, not deceased, and with a known follow-up date that exceeded the median 

predicted survival time for their gender and birth cohort is calculated by subtracting the 

birth year from the last observed date in UPBD.  Therefore, censored individuals that are 

likely still living were used in the LS analyses and have a positive LS score by definition.  

To test for biased results created by this specification, we ran sensitivity analysis using 

the nearly deceased cohort (N=14,618).  

 

Heritability Estimates 

Several forms of analysis of variance (ANOVA) are available to measure 

heritability of a phenotypic trait, such as parent-offspring regressions and sibling 



analyses.  While these models have useful features, they are limited because they do not 

use information from multigenerational relationships and they require that sample sizes 

be well-balanced.  Unlike other forms of analysis of variance (ANOVA), maximum 

likelihood (ML) estimators do not place special demands on the design or balance of the 

data, providing a powerful approach to estimating variance components using large 

pedigrees (Lynch & Walsh, 1998) and minimizing the inflation of estimates of additive 

genetic variance due to shared environments between relatives.  To allow for use of 

information on multigenerational relationships, heritability is estimated with a polygenic 

model using PAP v. 7.1 (Hasstedt, 2005).   

Genotypic variance can be decomposed into additive     , dominance     , and 

epistatic     .     and    are, however, extremely difficult to estimate in non-

experimental settings (Kruuk, 2004).  The polygenic model specifies the expected genetic 

relationship between relatives as a function of the coefficient of relationship, allowing for 

the estimation of variation due to genetic and residual environmental effects.  The 

coefficient of relationship is (1/2)
p
, where p is the degree of relationships (it is also 

commonly described as two times the probability that two individuals will share a 

common gene by descent (IBD)).  For example, for a parent-child relationship the 

coefficient of relationship is 0.5, which equals 2 x 0.25, where 0.25 is the probability that 

parent and child share a common allele.  The polygenic model allows us to partition the 

total phenotypic variance (  
 ) into the following components: 

  
    

     
  (eq. 4.1) 



where   
  is the additive genetic variance and   

  is the residual variance, which includes 

environmental, dominance, and epistatic effects.    These components are used to 

calculate heritability, with narrow sense heritability (h
2
) being defined as the proportion 

of phenotypic variance,   
 

, that can be attributed to the additive genetic effects,   
 : 

        h
2
=  

 /  
   (eq. 4.2) 

   The polygenic model is similar to a mixed model with fixed and random effects. The 

general model in matrix form is: 

          (eq.4.3) 

where y is a column vector containing the phenotypic values for a trait measured in n 

individuals; β is a vector of fixed effects; u is a vector of random effects; X and Z are 

known incidence matrices; and e is a column vector of random residual effects.  We 

assume that u follows a multivariate normal (MVN) distribution with mean zero and 

variance G, and that e also follows a MVN distribution with mean zero and variance R.  

Note that G =   
 A, where A is an n x n matrix of kinship coefficients describing the 

genetic correlation between all individuals in the sample, and R=  
 I, where I is the 

identity matrix.  This general model can be used to estimate the variance components for 

a single trait (univariate model) and has been extended to allow for joint modeling of 

multiple traits (bivariate for two traits and multivariate for multiple traits).  The univariate 

model was used to estimate the heritability of LS and exceptional longevity in the 

population.  We then use the multivariate model to estimate h
2
 by environment. 

The multivariate model provides a means for estimating covariance and, 

therefore, correlation between traits.  Falconer (1952) suggested that traits measured in 

two environments can be treated as two different traits.  This allows comparisons 



between discrete environments of different types, where the bivariate model defines a 

trait as being expressed in environment one or two.  For example, if individual i is in 

environment one, they have a value for trait one and are missing trait two.  Conversely, if 

individual j is in environment two, they are missing trait one and have a value for trait 

two.  This approach is more appropriate than stratification, because it allows for the joint 

estimation of heritability in two subpopulations.  It is also slightly different than a normal 

bivariate trait model, which jointly models two phenotypes measured on the same 

individual because no individual expresses a trait in both environments.  In this approach, 

k traits (in our case k=2) are combined to form a vector   [
  

  
]= (y11, … , y1n, …, y2n) 

with mean µz and variance G.   The model in matrix notation is,  

    [
   
   

] [
  

  
]   [

   
   

] [
  

  
]  [

  
  

] (eq. 4.4) 

where y1 and y2 are vectors of phenotypic values in environment one and two, 

respectively; β1 and β2 are the vectors of the fixed effects in environment one and two, 

respectively; a1 and a2 are the vectors of the random additive genetic effects in 

environment one and two, respectively; e1 and e2 are the vectors of random residual 

effects for environment one and two, respectively; X1 and X2 are the known incidence 

matrices relating the observations to the respective fixed effects in environments one and 

two; and W1 and W2 relate the observations to the random effects in environments one 

and two.   

The variance-covariance matrix for Z can be expressed as V = G + R       

     , where G is the Kronecker product of C and A      .  C is the k x k matrix of 

additive genetic covariances, and E is the k x k residual covariance matrix.  A and I are 



respectively the n x n kinship coefficient and identity matrices, with cij=σA(i,j) being the 

additive genetic covariance between characters i and j within an individual and cross-

covariance cijAlm being the additive genetic value of character i in individual l and the 

additive genetic value of character j in individual m (Lynch & Walsh, 1998, p. 777).  In a 

bivariate analysis, C is a 2 x 2 matrix of the form:   

  [
  

           

         
    

] (eq. 4.5) 

where   
     and   

     are the additive genetic variances for traits 1 and 2, respectively, 

and         is the additive genetic cross covariance.   

Defining the environment at the individual level and estimating heritability using 

the multivariate model without defining the genetic correlation between traits leads to 

biased estimates of heritability because heritability estimates from an environment only 

include information about family members in the same environment.  To correct for this 

problem, we assume perfect genetic correlation between the trait values.  A bivariate 

analysis that explicitly models genetic correlations exploits more information content of 

the data (Amos, de Andrade, & Zhu, 2001).  The genetic correlation between traits can be 

defined as: 

     
       

√   
    

 
 (eq. 4.6) 

where            
   and    

  are all components of variance mentioned above and 

                   .  By constraining      to one, we are requiring the covariance 

between traits to equal the square-root of the product of the variances and forcing the 

model to include information from both environments.  Constraining the genetic 

correlation to unity allows for heritability and additive genetic variance to vary in both 



environments, but requires them to be dependent.  In a bivariate trait analysis, where both 

phenotypes are measured for an individual, the genetic correlation is often estimated and 

used to describe the pleiotropic nature of the traits.  However, estimating the genetic 

correlation across environments would be erroneous in our situation because when 

    , we are only using partial information from the pedigree because the covariance is 

weighted by the correlation coefficient (          ).  Algebraically, this solves the bias 

problem because it forces the measure of additive genetic variance for each environment 

to include information about family members from both environments.  It is also 

conceptually plausible because a genetic correlation of one indicates the effect of the 

same polygenes on the trait in both environments.    

LS was Box-Cox transformed and standardized (µ=0, σ=1) to improve 

computational performance and abide by distributional assumptions of the variance 

components models. The transformation was performed using Proc transreg in SAS, 

which uses a maximum likelihood approach to find the optimal transformation, which in 

this cases was λ=1.75.  This transformation reduced the skewness coefficient from -0.85 

to -0.26.  The simple correlation between the transformed variable and the original 

measure of LS was 0.98.   

 To test the hypothesis of heterogeneity in heritability, the likelihood ratio statistic 

was used.  Models were estimated, allowing heterogeneity in heritability estimates 

between environments, and compared to models where the heritability estimates were 

constrained to be equal across environments.  Sex and birth year were not considered as 

covariates in the model because they were controlled for when creating the measures of 

longevity.   



 

Results 

Descriptive Statistics 

 Figure 4.3 shows the distribution of LS for the baseline survival cohort and the 

sample selected for the heritability estimates.  Both distributions are slightly skewed with 

means of -1.2 and -1.7 for the full cohort and the heritability cohort, respectively.   The 

skewed distribution reflects the change in the rate of mortality between ages 30 and the 

median predicted survival time for an individual’s sex and cohort.  Cohort life tables for 

Utah show that the qx for females at age 30 in the 1900 birth cohort is 0.02, compared to 

0.05 at age 60 and 0.29 at age 80 (Lindahl-Jacobsen et al., 2013).  Therefore, it is not 

unexpected to see the long left tail in the LS distribution.  The distributional skew is due 

to a combination of factors including model fit (the fit provides a good approximation of 

the survival curve, but does not fit the data exactly) and censoring of the youngest cohort.   

Table 4.2 shows the descriptive statistics for individuals in the heritability 

samples.  The longevity sample includes all 20,120 individuals with calculated longevity, 

LS, from the 802 selected pedigrees.  Individuals in the exceptional longevity sample 

were required to be born before 1914 so that we could observe survival in the UPDB to 

age 99.  Approximately 8% of males and females in this sample survive to the 90
th

 

percentile for their cohort and sex.  This number is slightly smaller than 10% because the 

cut point for the 90
th

 percentile is derived from the baseline survival models.   48% of the 

sample is female and approximately three-fourths of the sample was affiliated with the 

LDS church.  All members of a family with a sibling that died during infancy or 

childhood are counted as having an infant death in their family of origin and in historical 

cohorts.  Children from large families experience excess infant and childhood mortality 



rates (Bean, Mineau, & Anderton, 1990; Knodel & Hermalin, 1984), so this percentage is 

slightly higher than the 17.4% and 18.5% percent of nuclear families with an infant or 

childhood death, respectively.  There is not a substantial amount of overlap in these 

measures, with 6.4% of nuclear families having both an infant and childhood death.   

Figure 4.4 shows the effect of environment on LS without considering family 

structure.  Significant differences in LS exist in all environments.   Panel A shows the 

distribution of LS by religious status, with individuals not affiliated with the LDS church 

on average having a two point reduction in longevity score (p<0.001).  The distribution of  

LS by infant and childhood mortality in family of origin is displayed in Panels B and C 

respectively, with individuals having one or more sibling die during the post-neonatal 

period having a two point reduction in LS (p<0.001), and individuals with one or more 

sibling deaths during childhood having a 1.5 reduction in LS (p<0.001).  Panel D shows 

the distribution of LS by sibship size and illustrates the nearly two-point reduction of LS 

for individuals having seven or more siblings.   

 

Heritability estimates 

 

 The overall heritability of LS in the sample is 0.18, which is within the range of 

previously reported estimates.  We find that in the four environments considered when 

not conditioned on sex, the mean LS is lower in unhealthy environments but there are no 

significant differences in h
2
.   The pattern of heritability of LS by environment is 

somewhat mixed, with higher heritability of LS in environments with low IMR and 

CMR, but lower heritability of LS in the other two healthy environments.   It is important 

to note that heritability is a population statistic, thus we are comparing subpopulations 



defined by an environment and not average individual differences in phenotype.  The 

addition of environment-specific means and variances significantly improve model fit for 

all environments, with lower means and environmental variances in environments that are 

considered beneficial to longevity.   

To further investigate sex differences in heritability and GxE interactions, we 

considered models separately by sex.  In a bivariate model, considering only sex 

differences, we find that heritability of LS is significantly lower for females compared to 

males, h
2

LSf= 0.14 and h
2

LSm=0.22 (LR χ
2
= 9.03, p=0.003), and there is little difference 

between the mean and environmental variances by gender.  The lack of difference in the 

mean LS is by design.  LS was constructed as a gender specific measure (i.e., the baseline 

survival models were stratified by sex), and therefore one would not expect to see gender 

differences in the average LS. 

Multivariate models were used to calculate the heritability estimates for LS by 

environment and sex (results in Table 4.3).  When considering the differences in 

heritability of LS by sex and environment, the mean differences in LS by environment 

are similar, with lower mean LS in environments considered unhealthy.  We find no 

significant differences in the heritability of LS by environment with the exception of 

female environments classified by CMR, which show a nine point difference in h
2

LS 

between the healthful and unhealthy environments.  The heritability of LS is lower in 

female environments with high CMR when compared to female environments with low 

sibling CMR (LR χ
2
=5.88, p=0.015).  This is in contrast to the higher heritability of LS 

clustered about a lower mean LS in the male environment with high CMR compared to 

an environment with low CMR, although these differences are not significant.  For 



females, there is little difference in total phenotypic variance between the two CMR 

subpopulations (  
  is approximately 1.30 and 1.29 in high CMR and low CMR 

subpopulations respectively). This is supportive of the enhancement hypothesis, which 

suggests that individuals are unable to realize there genetic potential in adverse 

environments. 

Sensitivity analyses using the nearly deceased cohort (n=14,618) were run for the 

LS models.  We found that heritability estimates were slightly smaller (0.17 vs. 0.18 in 

the larger sample), but the observed differences by gender and environment were all in 

the same direction.  The differences in heritability by CMR environment remained 

significant.  

We considered defining EL as survival to the 90
th

 or 95
th

 percentile conditioned 

on birth year and sex.  The sample for these analyses is smaller than the sample used to 

obtain estimates of heritability of LS because observing EL requires a nearly extinct 

cohort (NLS=20,120, NEL= 14,618).   Heritability estimates for the two phenotypes were 

very similar, with h
2

EL=0.352 when EL is defined as survival to the 90
th

 percentile 

(shown in Table 4), and h
2

EL=0.345 (95% CI= 0.244, 0.447) when EL is defined as 

survival to the 95
th

 percentile (results not shown).  The small decline in heritability 

between the 90
th

 and 95
th

 percentiles suggests that heritability does not increase linearly 

with age, and that perhaps there is an upper limit to increases in heritability of longevity.  

However, the differences are negligible and not relevant to the main hypotheses of this 

paper.  Therefore, we show results for survival to the 90
th

 percentile conditioned on age 

and sex.   



Table 4.4 shows the heritability estimates for EL by environment and gender.  We 

find that heritability for EL is nearly twice the heritability of LS (0.18 vs. 0.35).  

Bivariate models were used to test for environmental differences in the heritability of EL. 

We find that allowing the prevalence to vary by environment significantly improves 

model fit, with higher prevalence of EL in healthful environments.  We find no difference 

in heritability of EL by environment when not conditioned on gender.  There are also no 

gender differences in the heritability of EL (LR χ
2
= 0.552, p=0.46), which differs from 

the LS findings.  

 When using the multivariate model to test for environmental differences in 

heritability of EL by gender and environment, we do not find evidence of significant 

differences in with the exception of the male CMR environment.  The heritability of EL 

is 31 points higher in male environments with high CMR compared to male environments 

with low CMR (LR χ
2
=4.25, p=0.04), and there is no difference in the prevalence of 

exceptional longevity between environments.  This suggests that a triggering GxE 

interaction may be operating through selection mechanisms, where the frail are selected 

out of the adverse populations at faster rates and only the genetically robust individuals 

with longevity assurance genes that are able to thwart the effects of gerontogenes survive 

to exceptional ages.   

 

Discussion 

Our analysis of longevity is based on information from 20,120 individuals from 

802 three-generation families used to examine the heritability of longevity, defined as 

survival after age 30.  We also estimated the heritability of exceptional longevity using 



information from a subset of that sample (n=14,618 ) that is nearly extinct.  Our findings 

support previous studies suggesting a moderate heritable component to longevity that 

increases with age (Herskind et al., 1996; Hjelmborg et al., 2006; Kerber et al., 2001), 

although the adult ages at which this assessment is made varies across analyses.  We find 

little difference between the heritability of survival to the 90
th

 and 95
th

 percentiles, 

suggesting that the increase in proportion of variance due to genetic factors may not be a 

constant linear increase as suggested by other studies (Hjelmborg et al., 2006).  We find 

that sex differences in the heritability of longevity after age 30 support other studies 

showing higher heritability of longevity for males (Herskind et al., 1996), but no sex 

differences in the heritability of exceptional longevity.  We investigated the heterogeneity 

of longevity and exceptional longevity by early and mid-life social environments.  We 

find some evidence that the heritability of longevity varies between environments, but 

overall there is not strong support of a gene-environment interaction for the selected 

environments.   

We find evidence that childhood environments marked by high child mortality, 

indicative of exposure to infectious disease and undernutrition for the surviving members, 

may affect the proportion of phenotypic variation attributable to genetic factors.  The sex 

and age differences of the effects suggest an enhancement GxE interaction because 

adverse childhood circumstances limit the genetic potential of individuals to survive to 

older ages.  Conceptually, CMR is used to identify environments with excess exposure to 

infectious disease and undernutrition.  For females, genetic factors contribute little to the 

total variance in longevity in such environments, which suggests that genetic potential is 



not reached in such environments.  While a similar pattern exists for EL, the difference in 

heritability between environments is not significant.   

We see the opposite effect for male environments, although the observed patterns 

do not necessarily conflict with the female results.  Males have a mortality disadvantage 

relative to females throughout the life course that is partially due to biological factors 

(Kraemer, 2000).  Therefore, they may be more susceptible to environmental conditions 

that trigger genetic predispositions for disease and lead to higher mortality selection 

compared to females reared in the same environment.  The difference in the direction of 

the effect for males suggests that the adverse environment may actually trigger genetic 

diatheses, with higher heritability clustered about a lower mean longevity in deleterious 

environments, but these differences are not significant.  This results in higher heritability 

of exceptional longevity because individuals surviving to this age have some 

predisposition or genetic robustness that prevented them from being selected out of the 

population at earlier ages.  

 It is interesting that we find heterogeneity in CMR environments, but not in 

environments characterized by IMR.  This may be partially due to differences in specific 

causes of death for the two groups, as suggested by Wolleswinkel-van den Bosch et al. 

(2000).  We did consider variations of our definition of IMR, which included neonatal 

deaths, although this did not change the substantive conclusion that heritability of 

longevity does not vary between subpopulations with different rates of infant mortality.   

While we find some evidence of heterogeneity in the heritability of longevity 

between environments, heritability estimates seem to be fairly impervious to early and 

mid-life circumstances.   Herskind et al. (1996) reported stability of heritability estimates 



over sex and cohort during periods of rapid change in living conditions.  However, the 

birth cohorts selected for that study would still be children during periods with higher 

childhood mortality (1870 – 1900) than experienced during modern times.  Our results 

suggest that improvements in social and health conditions that have caused declines in 

childhood mortality may lead to a higher proportion of variability in longevity 

attributable to genetic factors.  More research needs to be done to test for other 

environmental differences in the heritability of longevity, including socioeconomic status 

and fertility history.   

The nearly twofold increase in heritability of exceptional longevity compared to 

the heritability of longevity after age 30 suggests that selection mechanisms may affect 

the heritability of longevity throughout the life course.  Individuals without longevity 

assurance genes may be selected out of the population at early ages, leaving a subset of 

the population that is made up of a higher proportion of robust individuals.  While the 

heritability of longevity increases with age, exceptional longevity is still only moderately 

heritable, and the environment explains the largest amount of phenotypic variation.   It is 

also remarkable that there are gender differences in heritability of longevity after age 30, 

but not with respect to exceptional survival.  This is suggestive that individuals surviving 

to exceptional ages have survived mortality selection because they have a genetic variant 

that increases the ability to handle stress and/or counteract deleterious effects of the 

environment or generontogenes.  This is further supported by other research suggesting 

the buffering role of longevity genes (Bergman, Atzmon, Ye, MacCarthy, & Barzilai, 

2007; Sebastiani et al., 2012).  



Epigenetics is one of several possible biological mechanisms that allow social 

circumstances to get “under the skin”, and it recently has been suggested that epigenetic 

changes have the propensity to persist across subsequent generations (Feinberg, 2007).  

This is a provocative idea that lends support to mutligenerational transmission of social 

disparities.  More research needs to be done to uncover the possible mechanisms leading 

to phenotypic variation across social environments and the possibility of transmitting the 

adverse effects to subsequent generations.  We suggest further study into the possibility 

of GxE interactions and health and longevity outcomes.  While we did not find an 

association between all environments, there is a suggestion that the social environment 

may play an important role in modifying the heritability of longevity.   

In this paper, we assessed variation in heritability estimates of longevity after age 

30.  However, other cutoffs, such as post-reproductive aging, should also be considered.  

This will be done before the PAA 2014 conference.  Further modeling of heterogeneity 

of variance and the variance of longevity across other environments could be valuable in 

understanding how the social environment moderates the genetic component to aging.  

Socioeconomic status and adult fertility will be two environments that will also be 

considered for the PAA 2014 conference.  Our preliminary work suggests that 

heritability of longevity varies by SES.   

Care should be taken when interpreting polygenic heritability when the genetic 

correlation has been fixed to unity, because it is assumed that the same genes affect 

longevity across environments.  While we feel this is a valid assumption for subgroups of 

a single population, and the reader should be aware of this constraint. 



To our knowledge, this is the first study using multigenerational pedigree 

information to investigate heterogeneity in heritability of longevity across multiple early 

and mid-life environments.  Studies in other fields have examined heterogeneity in 

variance components by gender and age using a similar method (Giolo, Pereira, de 

Andrade, Krieger, & Soler, 2010; Pilia et al., 2006), lending validity to this approach. 

   

 

 

   

.    
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Table 4.1.  Pedigree Selection 
 

    3 Generation Families from 

1850 - 1927 Cohort* 
111,324 

    
Exclusions 

     Families missing information 

on at least one grandparent 

(These people have 

placeholder genealogy 

records) 

31,322 

    At least one of the 

grandparents is born before 

1850 

52,780 
  

A member of G3 born after 

1927 
26,420 

    Total Number of 3 

Generation Families for 

Analysis 
802 

    *This is calculated by taking any member of the BC and ascending 3 

generations.  The result is 111,324 distinct treetops (defined by the unique 

combination of maternal and paternal grandparents).  Families that did not 

meet our selection criteria were then excluded. 
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Table 4.2. Descriptive Statistics for Individuals from 802 Utah families 

  

  

Longevity 

(N=20,120)   

Exceptional Longevity 

(N=14,618) 

  

Male  

(N=10,393) 

Female 

(N=9,727)   

Male 

(N=7,532) 

Female 

(N=7,086) 

Birth Year 1897 (21.1) 

1897 

(20.3) 

 

1889 

(18.8) 

1889 

(18.0) 

Longevity Score (LS) -1.7 (15.2) -1.9 (15.5) 

 

-2.3 (15.4) -2.7 (16.5) 

Survived to the 90th Percentile (EL) 

   

8.4% 8.0% 

Survived to the 95th Percentile 

   

4.2% 3.9% 

Baptized Latter-Day Saint 72.5% 74.4% 

 

75.6% 77.7% 

One or more Post-Neonatal Infant 

Deaths in Family of Origin 19.5% 19.7% 

 

23.9% 23.1% 

One or more Childhood Deaths in 

Family of Origin 19.5% 19.9% 

 

23.1% 24.2% 

Large number of Siblings 29.6% 29.2%   35.6% 35.6% 
 

   

1
6
5
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Table 4.3.  Summary of the Results Obtained for Polygenic Models of LS (N=20,120) 
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Table 4.4.  Summary of the Results Obtained for Polygenic Models of EL 
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Figure 4.1. Hypotheses for GxE Interactions.  Panel A shows the expected phenotypic variation 

in a normal environment.  Panel B shows a triggering GxE interaction in an adverse 

environment.  Panel C shows a compensation GxE interaction in an enriched environment.  Panel 

D shows an enhancement interaction in an enriched environment. 

 

  



169 
 

 
 

Figure 4.2.  Predicted Values of Survival to the 50th and 90th Percentiles by Gender and Birth 

Year.  Panels A and B show the estimates for male 50
th

 and 90
th

 percentile estimates  

respectively.  Panels C and D show estimates for female 50
th

 and  

90
th

 percentiles respectively. 
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Figure 4.3. Distribution of Calculated Longevity for Individuals Born between 1850 and 1927  

and Surviving to Age 30.  Panel A shows the distribution for the cohort used in the  

baseline survival analysis (N=685,949).  Panel B shows the distribution for the  

heritability sample (N=20,120) 
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Figure 4.4.  Distribution of Longevity by Environment.  Empirical densities of longevity are 

plotted by environment. 

 

 


