
An examination of parameter recovery for an integrated approach to  

investigating the behavioral and genetic components of health behaviors 

 
 Most health behavior outcomes of interest to social demographers including smoking, alcohol 

consumption, and obesity are strongly affected by both environmental and genetic factors. Research in the gene-

environment (GxE) interaction literature has made it clear that a full understanding of these complex phenomena 
requires some information about genetic risks but also a clear accounting of the social context in which 

individuals work, play, and eat (Boardman et al., 2008; Boardman et al., 2012).  Emerging evidence for the GxE 

perspective has led to calls from social scientists and genetic epidemiologists for a cogent and testable 

framework for GxE research (Bookman et al., 2011) from interdisciplinary teams (Mabry et al., 2008) that has 
been echoed by the National Academy of Sciences, (Hernandez and Blazer, 2006), the National Science 

Foundation through its IGERT program, and multiple RFPs from NIH with an explicit emphasis on gene-

environment research.   
One of the most limiting factors with respect to integrating genetic information into social demographic 

research remains the large differences in study designs and the diversity of statistical methods that enable genetic 

information to be included in the analyses. For example, some studies only sample twins and siblings (e.g. the 

Longitudinal Twin Study), others have candidate gene information for siblings (e.g., Wisconsin Longitudinal 
Study), unrelated individuals (e.g., Rochester Youth Development Study), or both (e.g., National Longitudinal 

Study of Adolescent Health [Add Health]) and at times, candidate gene data are available for both parents and 

their children (Framingham Heart Study or the Families in Transition Project). The specific methods that are 
used for these specific research designs may inadvertently create barriers between the different groups of 

researchers that make collaborative efforts overly difficult. 

This limitation is particularly pressing as more studies add genome-wide data from respondents of large 
ongoing cohort studies such as AddHealth and other ongoing longitudinal studies. Social demographers will 

soon be ―drinking from the firehose‖ (Hunter and Kraft, 2007) and yet there are very few agreed upon methods 

to facilitate the incorporation of this vast and growing source of information for respondents into the standard 

methods used in traditional demographic inquiry for different sample designs. This proposal outlines a general 
approach for simultaneously estimating the degree of genetic influence alongside the effect of environmental 

mediators and moderators (such as education in the case of tobacco use). We do this by considering state of the 

art methodological improvements to the models used in demographic research that utilizes genome-wide and 
sequenced data. The focus of this paper would be an evaluation of this new method via a simulated investigation 

of the quality of parameter recovery under a variety of conditions chosen specifically to mimic the types of data 

demographers may use in practice. 
 

Methodology 

 There is a long history of comparing phenotypic similarities of individuals within families as the primary 

mechanism to understand the genetic component of phenotypic variation. These methods typically rely on 
structural equation based (Neale and Cardon, 1992) or regression based methodologies (DeFries and Fulker, 

1985; Rodgers and McGue, 1994). These methods are generally specific to a certain design such as studies that 

include identical and fraternal twins (Kohler, Behrman, and Schnittker 2011). While these approaches are 
collectively considered the standard toolkit of behavioral genetic analysis, they are somewhat limited in their 

application to social demographic inquiry. More recently, scholars have begun to use variants on the multi-level 

model as an analytical tool for solving these problems. Guo and Wang (2002) proposed this approach which has 

been used extensively and their approach was extended by Rabe-Hesketh, Skrondal, and Gjessing (2008) who 
developed an alternative estimation strategy that allowed for relationship structure. Both approaches, however, 

require simplifying assumptions about relationship status and can not use relatedness based on measured 

genotype. Since genetic similarity between unrelated people can be used to estimate heritabilites (e.g., Yang et 
al., 2011) it would also be useful to be able to incorporate this information into other demographic inquiries. 

 For a phenotype of interest , consider the ACE model: 

 

for individual . This model may be used to estimate the proportion of the variance in  that is accounted for by 

additive genetic component, , and shared-environment, , components (  is white noise random error). The 

effects  and  are assumed to be random and identification for this model clearly requires distributional 



assumptions so that they can be distinguished from the error term. One possibility would be on the basis of 

family structure (e.g., Rabe-Hesketh, Skrondal, and Gjessing, 2008) but this excludes the use of relatedness 

based on measured genotype. To allow for such relatedness, we focus on models of the form:  

, 

, 

where  are predictive covariates, is again the vector of the individual  random effects, and  are individual 

level errors. The  matrix is at the heart of our approach and requires additional comment. For individuals  and 

,  is still the genetic relatedness of two individuals. It could be know based on pedigree (e.g., twins, parent-

child, etc.) or it could be determined via measured genotype. We discuss estimation of the  matrix and the full 

model in the subsequent discussion of the two simulation studies. 
 This approach allows for a common analytic framework for a variety of study types (e.g., unrelated 

individuals versus family-based), but it also accommodates the inclusion of predictors that may be of substantive 

interest to demographers. This ability to control for a variety of predictors within a common framework is 
important since genetic, individual, family, and environmental predictors may all be of interest. Consider obesity. 

A study may be simultaneously interested in the influence on obesity of the amount of exercise an individual 

engages in each week, the number of fast food outlets in an individual’s neighborhood, and a single nucleotide 

polymorphism (SNP) or genetic risk score. In our suggested approach, all of these predictors could be treated 

within the  matrix of predictors and their influence could be considered controlling for the genome-wide 

influence (through ) on a phenotype. 

 

Simulation Study 1 

 The first simulation study in this paper is meant to examine the ability of the method to recover truth 

based on several manipulated characteristics of a particular data set. Models are estimated using state of the art 
Bayesian techniques. Estimation will be done using the recently released Stan software (The Stan Development 

Team, 2012a, 2012b). This software performs Bayesian estimation via Hamiltonian Monte Carlo (Hoffman and 

Gelman, in press). In initial work, we have focused on a simplification of the equation introduced above: 

, 

, 

. 

The simulation focused on this simple setting where the phenotype for an individual is normally distributed 

conditional on the effect of a covariate and an individual-level random effect, , related to genetic influence. 

These individual-level effects are distributed as described earlier, with  varying across the different iterations 

of the simulation and , which defines the genetic relatedness of two individuals, containing draws from a 

uniform distribution on 0 to 0.05 (e.g., individuals are simulated to be unrelated). This model only contains an 

additive genetic component, it does not contain a shared environmental or a dominant genetic component. We 

feel that this is a reasonable simplification since additive effects are frequently the prime objects of interest and 
shared environment will not be an issue with unrelated individuals. The simulation has focused on manipulating 

three parameters: (1) the size of the sample of unrelated individuals, (2) the ratio of the genetic contribution to 

phenotypic variance to overall phenotypic variance, and (3) the predictive strength of a covariate (the value of 

).  

 In our initial work, recovery of the  parameter is good. This is not surprising since the predictor is not 

associated with genotype in this simple simulation. However, the quality of the recovery of the ICC 

(  heritability is much more dependent on the conditions of the simulation (see how the blue line 
tracks the black line, truth, in Figure 1). Critically, our simulation suggests that the proposed approach is a 

feasible method of calculating the genetic contribution to phenotypic variance if the sample size is large enough 

(e.g., accurate results were obtained for simulations with 750 individuals but not for those with 250 individuals). 

Moreover, we have found that the accuracy in the estimation of the ratio of genetically explained variance to 
overall phenotypic variance is a function of the true value of this ratio. When the genetic contribution is low, our 

method tends to over-estimate this ratio in simulation. This is an important bias (that also potentially applies to 

other methodological approaches) given that this variance will naturally vary as a choice of phenotype. 



 

Figure 1: Recovery of ICC for various simulation conditions. 

 

Simulation Study 2 

 The second study examines the sensitivity of the method to population stratification, particularly as it 

affects different methods for measuring genetic relatedness based on measured genotype. Our initial work on 
estimation of genetic relatedness suggests that these estimates are extremely sensitive to population stratification. 

Since they underlie the entire approach, understanding this sensitivity is of paramount importance. There are a 

variety of methods available for measuring genetic relatedness. One approach is to use the genetic relatedness 
values computed by GCTA (Yang et al. 2011). However, we have found these to be quite sensitive to the racial 

diversity of the sample in which they are computed and intend to compare them from alternative possible 

estimates such as those from KING (Manichaikul et al. 2010). Measured genetic data from a nationally 

representative sample that, crucially, contains individuals from diverse racial backgrounds, will be used as the 
basis for examining the sensitivity of inferences to the method while still using simulated phenotypes. The use of 

simulated phenotypes is important since it will allow us to determine under what conditions certain indices of 

relatedness, perhaps restricted to only certain subsamples of our overall sample, lead to accurate inference 
regarding the genetic influence on a phenotype. 

 

Discussion 
 The need for demographers to consider genes alongside environmental and physical characteristics in 

understanding physical and mental health behaviors is clear but doing so can be challenging. The approach 

explored in this paper allows demographers to include genetic information into the statistical models that are 

standard in the literature using the recently developed Bayesian techniques. The simulation studies described 
here are necessary to describe conditions under which accurate inferences can be reasonably obtained.  
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