

Fundamental social causes in childhood vaccination: Madagascar S. Clouston, R. Kidman, T. Palermo

Program in Public Health, Stony Brook University

Figure 3. Multilevel logistic model assessing the influence of SES on vaccination

Introduction

- Research has long focused on social inequalities in health in rich countries.
- Fundamental Cause theory posits that social inequalities in health arise in part social actors use resources to influence survival
- Resources, including money, power, prestige, knowledge, and beneficial social connections, can influence knowledge about and access to life-saving preventions.
- Fundamental cause theory is equally applicable in situations where resources are generally unavailable, but are still unequally distributed.
- Vaccination is effective at reducing child mortality, but is unequally available in resourcepoor settings.
- Barriers to access bias estimates of socioeconomic inequalities.

Objective

To robustly estimate the association between parental socioeconomic status and vaccination among children.

Results

Figure 1. There is substantial regional variability in vaccination rates: white areas show

Vaccinationdf

Mothers Edu.

Fathers Edu.

Household Wealth

Table 1. Sample characteristics

76.48%

80.56%

73.20%

68.82%

48.01%

25.08%

22.16%

24.71%

	for DPT, Polio and Measles:
	few areas show coverage approaching herd immunity
districts, SES was ed with vaccination 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Diphtheria, Tetanus, and Pertussis Poorest households; mothers lack primary schooling (N=1831) Poorest households; mothers have primary school educations (N=1640) Wealthiest households; mothers lack primary school ing (N=65) Wealthiest households; mothers have primary school education (N=554)	Legend No Herd Immunity One Two Full Immunity No Data

Table 2. Odds ratios estimated using multilevel models, adjusting for administrative, geographic, and household variability

Figure 2. District variation in

achievemnt of herd immunity

	OR	95% CI	Р
Nother's Primary School	3.34	2.21, 5.07	<0.001
ather's Primary School	2.11	1.38, 3.24	0.001
1edian wealth	2.81	1.64, 4.84	< 0.001
seudo-R ²	0.27		<0.001

Summary

- Socioeconomic inequalities are not limited to rich countries
- Inequalities in vaccination occur even when most people are absolutely poor
- Results support FCT, suggesting that a number of mechanisms link parental SES to vaccination outcomes
- Regional variability overcomes but can also exacerbate such inequalities
- In some districts, fewer than 25% of children report being vaccinated
- This is particularly concerning for Polio, which has not been eliminated and has reemerged in a number of wartorn and empoverished areas
- Herd immunity depends on consistent coverage

Data (N≥4,557)

Diphtheria, Tetanus, and Pertussis

Tuberculosis

Poliomyelitis

H. Influenza B

No Primary

No Primary

Poorest

Measles

- Data come from the 2008-9 wave of the Demographic and Health Survey (DHS), Madagascar.
- Vaccination was measured amongst children aged 0-4.
 - Age-specific compliance for 5 Vaccines: DPT, Measles, Polio, Tuberculosis, and H. Influenza B
- Mother & Father's educational attainment was directly measured.
- Household wealth was measured using Filmer & Pritchett quintiles.
- GPS data were observed for geographic clusters, which are nested within districts.

Methods

- Multilevel logistic regression was used, with random intercepts specified to account for shared-variability.
- Four-level model: individual, household, cluster, and district-level variation.
- Clusters capture geographic differences in proximity to or barriers to healthcare
- Households capture shared differences within households in parental preferences or experiences regarding vaccination.
- Maps show geographic variability in vaccination uptake.

Conclusions

- FCT is generally applied to health in rich countries, but can be applied even when most people are poor
- Preventive medications can save lives, but doing so requires efficient and effective distribution
- Herd immunity may be compromised in small areas where poor people are concentrated