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Introduction

Recently, the modal age at death has been paid more attention as an indicator of longevity

(Horiuchi et al. 2013). Although many studies have discussed the modal age at death, there

have been few articles that examined decomposition analyses of the change of the modal age

in terms of the shifting and/or the compression of the mortality curve.

The author has proposed the Linear Difference (LD) model that is a shift-type adult mor-

tality model and shown that the model has some advantages for the modeling of adult mor-

tality for Japan and several EU countries compared to the decline-type model such as the

Lee-Carter model (Ishii and Lanzieri 2013).

In this paper, we propose a new decomposition method for the modal age at death using

the LD model, and give decomposition analyses with the method.

1 Data and Method

1.1 Data

In this paper, we use mortality data for female from 1970 to 2010 by the Human Mortality

Database(HMD) and those by the Japanese Mortality Database (JMD) for Japan.

We mainly worked on mx,t functions where x is age and t is a calendar year. We extrapo-

lated the mortality rates above age 110 fitting the two parameter logistic model

mx,t =
αt exp(βtx)

1 + αt exp(βtx)

that are the same method as used in the HMD (and JMD).
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1.2 Definition of the LD (Linear Difference) Model

Next, we will state the mathematical formulations putting special emphasis on the log

mortality and its inverse functions, and the differential of them by time, as used in Ishii and

Lanzieri (2013).

Let X = [0, +∞) be the space of age and T = (−∞, +∞) be the space of time. In the

following discussion for modeling mortality, we will work on µx,t, the hazard function for

exact age x ∈ X at time t ∈ T.

The log hazard function of mortality is expressed by y = λx,t = log µx,t, where y ∈ Y =

(−∞, +∞) is the value of the function. Then, the set S = {(x, t, y)|y = λx,t} determines a

surface in R3, called the log mortality surface. This is a conventional representation of the log

mortality surface. In this representation, y = λx,t would be considered as the height from the

X-T plane in R3.

Here, we consider another representation of the log mortality surface under a set of as-

sumptions.

We assume that λx,t is a smooth continuous function with respect to x and t defined on

X0 × T0 = [0, ω] × [t0, t1] ⊂ X × T, where ω < +∞ is a finite maximum age for mortality

models.

For the purpose of modeling adult mortality, we can further assume that λx,t exhibits a

strictly monotonic increase with respect to x for each t and x > x0(t). Here, x0(t) represents

the lower bound of x above which λx,t exhibits a strictly monotonic increase for each t. Then,

for each t, the function λt(x) defined by

λt : X̃t → Y, λt(x) =
def

λx,t

is an injective (one to one) function of x, where X̃t = [x0(t), ω]. Let Ỹt = λt(X̃t), then

λt(x) : X̃t → Ỹt has an inverse function νt(y) : Ỹt → X̃t defined on Ỹt for each t.

Let us define Y0 as follows:

Y0 =
def

[y0, y1] where y0 = sup
t∈T0

min Ỹt, y1 = inf
t∈T0

max Ỹt,

Then, we can define νy,t : Y0 × T0 → X0 by

νy,t =
def

νt(y)

νy,t gives the age x at which the value of the log hazard function is equivalent to a value y at

time t.

Moreover, we define the following two differential functions by time t: (1) ρx,t: the mortal-
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ity improvement rate and (2) τy,t: the force of age increase.

ρx,t =
def

−∂λx,t

∂t
= −∂ log µx,t

∂t

τy,t =
def

∂νy,t

∂t

Figure 1 shows a stylized example of the log mortality surface and the above two functions.

The blue lines show the log mortality surface in a usual representation, that is, the height

from the X-T plane which is determined by λx,t. The black point on the log mortality surface

is (x, t, y) = (1, 2,−1.5), which could be recognized that the height from the X-T plane is -1.5

when (x, t) = (1, 2). If we travel on the surface with x fixed, the height from the X-T plane

will decrease to around -1.86 when t = 3, which is shown in a brown arrow. The difference

between the two heights corresponds to −ρx,t.

On the other hand, the log mortality surface is also represented by the height from the Y-T

plane, which is determined by νy,t. In this viewpoint, the black point is recognized that the

height from the Y-T plane is 1 when (y, t) = (−1.5, 2). The orange lines on the surface show

the contour with y fixed, so we go along these lines when we travel on the surface with y

fixed. If we start from the black point again but keep y fixed this time, the hight from Y-T

plane will be 3 when t = 3, which is shown in a purple arrow in the figure. The difference

between the two heights corresponds to τx,t.

Let us define the LD model satisfying the property that τy,t is a linear function of x for each

t, i.e. τy,t = f ′t + g′tx. By integrating both sides with t, we obtain νy,t = ft + gtx + ay where ay

denotes a standard pattern of inverse log hazard rates.

The Figure 2 shows the stylized example of the LD model. The colored horizontal arrows in

the upper half of the Figure 2 show the amount of shifts of the mortality curve indicated with

the black line, which correspond to the τy,t. The vertical arrows at the bottom have same

lengths as in the upper side with the same color whose directions are rotated 90 degrees

counter-clockwise. The LD model requires that the amount of shifts is a linear function of

age, which means the end point of the arrows form a line. The parameter g′t means the slope

of the above line, so the gt means the slope of age increases between time t and t0 (base point

of time).

Here, we consider another variable St as a location of the mortality curve instead of f ′t or

ft. St is defined as the age that the mortality rate equals to 0.5 at time t. We can always covert

from St to ft using the value of gt. The Figure 3 shows the stylized example of the effect of

change in St and gt. Assuming that the mortality curve at a base point of year is shown as

the black line, the increase of St with gt fixed changes the curve into one shown as the red

line. Therefore, we can recognize the mortality improvement by the increase of the St as the
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Figure 1 Log Mortality Surface and Two Differential Functions
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shifting of the mortality curve. On the other hand, the decline of gt with St fixed changes the

curve into one shown as the blue line, which exhibits some compression features of mortality

during the improvement.

1.3 Decomposition of the Change in Modal Age using the LD Model

First, we describe the methods for estimating the Mt, modal age at death. It is often dif-

ficult to estimate the Mt from the raw dx functions in the life tables due to the fluctuations.

Therefore, smoothing methods and/or parametric modelings are usually used in estimation.

Canudas-Romo (2008) used the approximation by quadratic function originally proposed

by Kannisto. Horiuchi et al. (2013) used a nonparametric smoothing method based on P-

splines. Here, we used the minimum-R3 moving averages with 9 terms by Greville (1981) for

smoothing the mx functions that is used in the official life tables for Japan, and estimated the

Mt using quadratic approximations used in Canudas-Romo (2008).

In the LD model, we can derive the following decomposition of the trends of Mt: the modal
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Figure 2 Stylized example of the LD model
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d
dt

Mt = f ′t + g′t

Mt −
1

µx,t −
∂2

∂x2 λx,t
∂

∂x λx,t

 = S′
t + g′t(Mt − St) − g′tDt

where Dt = 1

µx,t−
∂2

∂x2 λx,t
∂

∂x λx,t

.

This formula is interpreted as follows. The S′
t stands for the amount of shifting, the g′t(Mt −

St) does for the effect of compression at the modal age, and the −g′tDt does for the gap of

the modal age at t + dt and the age at t + dt that the value of the λx,t of the modal age at t is

taken. Moreover, the formula d
dt Mt = f ′t + g′t(Mt − Dt) could also be seen as the change of

the modal age at death is equal to the force of age increase for the age Mt − Dt.

To derive this decomposition, we first notice a relationship that holds on the Mt.

Proposition 1. When x = Mt, then

∂

∂t
µx,t =

∂

∂t
∂

∂x
λx,t
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Proof.

∂2

∂x2 lx,t = − ∂

∂x
(µx,tlx,t)

= −∂µx,t

∂x
lx,t − µx,t

∂lx,t

∂x

= −lx,t

{
∂µx,t

∂x
− µ2

x,t

}
If x = Mt, then ∂2

∂x2 lx,t = 0. Therefore,

∂µx,t

∂x
= µ2

x,t

⇔ ∂

∂x
log µx,t = µx,t

⇒ ∂

∂t
µx,t =

∂

∂t
∂

∂x
λx,t

In the following discussion, we will consider the expression of the Mt as a linear combina-

tion of the tangent vectors on S which directions are defined either x or y is fixed. Then we

use the above relationship to describe the location of Mt.

Before we write down the formula for Mt, we show the following relationships that hold

in the LD model.

Proposition 2. When x is fixed,

∂

∂t
µx,t = − ∂

∂x
µx,t( f ′t + g′tx)

∂

∂t

(
∂

∂x
λx,t

)
= − ∂2

∂x2 λx,t( f ′t + g′tx) − ∂

∂x
λx,tg′t

Proof. The log mortality surface S is defined by the equation λx,t − y = 0, the tangent space

on (x0, t0, y0) is Y − y0 = ∂λx,t
∂x (X − x0) + ∂λx,t

∂t (T − t0). Now (τy,t, 1, 0) is a tangent vector on

S, therefore we have

0 =
∂λx,t

∂x
τy,t +

∂λx,t

∂t

⇔ 1
µx,t

∂µx,t

∂t
= − 1

µx,t

∂µx,t

∂x
( f ′t + g′tx)

This shows the first equation.
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Then, using this formula,

∂

∂t

(
∂

∂x
λx,t

)
=

∂

∂x

(
∂

∂t
λx,t

)
= − ∂

∂x

{
∂

∂x
λx,t( f ′t + g′tx)

}
= − ∂2

∂x2 λx,t( f ′t + g′tx) − ∂

∂x
λx,tg′t

This completes the proof of the second equation.

Next we observe the similar relationship when y is fixed. Obviously, ∂
∂t µx,t = 0 when

y = λx,t is fixed. We consider the directional derivative along τy,t of the slope ∂
∂x λx,t.

Proposition 3. When y is fixed,

∂

∂t
µx,t = 0

Dτy,t

(
∂

∂x
λx,t

)
= − ∂

∂x
λx,tg′t

Proof. The slope at t = t0 is expressed as 4y
4x when 4x → 0. Then, at t = t0 + h for small h,

the slope is expressed as

4y′

4x′
=

4y
(1 + g′t0

)h4x

since 4x′ = {x0 + 4x + ( f ′t0
+ g′t0

(x0 + 4x))h} − {x0 + ( f ′t0
+ g′t0

(x0))h}.

Then,

Dτy,t

(
∂

∂x
λx,t

)
= lim

h→0

1
h

{
4y

(1 + g′t0
)h4x

− 4y
4x

}

= lim
h→0

1
h
4y
4x

−hg′t0

1 + hg′t0

= − ∂

∂x
λ(x0, t0)g′t0

Now we are ready to derive the first formula. Assume that M: the tangent vector on S along

x = Mt is expressed by a linear combination of A and B as M = (1 − k)A + kB, where A and

B are the tangent vectors on S when x and y is fixed respectively. Then d
dt Mt = k( f ′t + g′tx).

Using the Proposition 1,
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− (1 − k)
{

∂2

∂x2 λx,t( f ′t + g′tx) − ∂

∂x
λx,tg′t

}
− k

∂

∂x
λx,tg′t = −(1 − k)

∂

∂x
µx,t( f ′t + g′tx)

⇔k( f ′t + g′tx) = − g′t

µx,t −
∂2

∂x2 λx,t
∂

∂x λx,t

+ ( f ′t + g′tx)

Substituting x = Mt,

d
dt

Mt = f ′t + g′t

Mt −
1

µx,t −
∂2

∂x2 λx,t
∂

∂x λx,t

 = S′
t + g′t(Mt − St) − g′tDt

where Dt = 1

µx,t−
∂2

∂x2 λx,t
∂

∂x λx,t

.

This completes the proof of the decomposition.

2 Results

Here, we show the results for Japan. Figure 4 shows the actual log mortality rates and

Figure 5 show the trends of St and gt. We can observe that the St has increased steadily in

this period, that reveals the shifting feature of the old mortality. On the other hand, gt has

remained almost stationary from 1980 to 2000 that means the shifting is strongly close to

parallel shift in this period, although it has decreased before 1980 and after 2000.

Figure 4 Mortality Rates (Actual, Fe-
male, Japan)
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Figure 5 Trends of St and gt(Female Japan)
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Figure 6 shows the trends of the Mt for the actual mortality and the LD model. We can

observe that the both trends are similar, so we analyze with the mortality rates by the LD

model.

Figure 7 shows the results of the decomposition results of the change of Mt for the LD

model by every ten years. We can observe that the increase of Mt is mainly caused by the

shifting from 1980 to 2000, whereas compression plays a larger part before 1970 and after

2000.

Figure 6 Trends of the Modal Age at
Death (Actual and LD, Female, Japan)
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3 Concluding Remarks

In this paper, we proposed a new decomposition method for the modal age at death us-

ing the LD model. The LD model is originally developed for mortality projections for Japan.

Therefore, the number of parameters are reduced in terms of parsimony. This might be a

restriction in terms of a flexible expression for various types of mortality situation. Actu-

ally, Ishii and Lanzieri (2013) has shown that the LD model works very well for some EU

countries, whereas it does not much for others.

However, this feature brings another possibility to derive simple analytical formula, as we

have just discussed in this paper. The decomposition that we propose is easy to apply when

the mortality curves are modeled by the LD model, and has a clear interpretation composed

by shifting, compression and other parts. We have shown the decomposition analysis for

Japanese female as an example. From the results, we observed a strong parallel shifting

feature from 1980 to 2000 that also increased Mt by shifting components. On the other hand,
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the compression components played a larger part for the increase of Mt before 1970 and after

2000.

The analytical decomposition of trends in the modal age at death proposed in this paper

would be considered useful for understanding of old age mortality. At the same time, we

have also made it clear that the LD model has various applicability other than mortality

projections.
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