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Abstract 
The World Health Organization (WHO) classification scheme for the degree of prevalence of 

malnutrition in a population suggests using anthropometric Z-scores with a cut off value of -2 to 

see the percentage of subjects belonging to the study population lying two standard deviations 

below the reference median and quantify the prevalence using this percentage. Although 
anthropometric indicators are widely used for assessing the nutritional status of children, lack of 

consensus on standardized growth reference and the choice of cut-off points for prevalence 

estimates have restricted the use of such measures particularly in the developing countries. 
Towards this goal, the present article proposes an extension of Mora‟s method (Mora, 1989) to 

estimate nutritional deficit using skew normal distribution for the distributions of the Z-scores of 

the observed populations. The application of the proposed method is illustrated for the selected 
states/regions from three countries, India, Bangladesh and Nepal using latest NFHS/DHS survey 

data. 

 
Keywords: Anthropometric z-scores, Box–Cox Transformation, location and scale family, 

reference population, skew normal distribution. 

 

1. INTRODUCTION 

 

Child malnutrition is internationally recognized as an important public health indicator 

and an essential component of a country‟s overall human development. The devastating 

effects of malnutrition on human performance, health, and survival are today well 

established (Chang et al, 2002; Martorell, 1992; Walker et al, 2000; Mendez and Adair, 

1999; Pelletier and Frongillo, 2003; Caulfield et al, 2004) and a recent global analysis 

demonstrated that child malnutrition is the leading cause of the global burden of disease 

(WHO, 2002). As a result of the increased recognition of the relevance of nutrition as a 

basic pillar for social and economic development, monitoring trends in childhood 

malnutrition has gained increasing importance in assessing the progress made by nations 

in achieving internationally set goals, such as the Millennium Development Goals.  

 

It is widely accepted that for practical purposes anthropometry is the most useful tool for 

assessing the nutritional status of children. Admittedly almost any illness will impair a 

child‟s growth, but in practice in developing countries growth deficits are caused by two 

preventable factors, inadequate food and infections. In general, infections influence body 



 2 

size and growth through their effects on metabolism and nutrition. Thus, the classical use 

of anthropometry as the most readily available method of assessing nutrition is logical 

and is popularly practiced (WHO, 1986). It is also recognized that, a deficit in growth is 

not necessarily only due to inadequate nutrition and chronic ailments, genetic factors, 

both within and between populations may also affect growth. In spite of all these caveats, 

the central role of anthropometry in nutritional assessment is widely accepted and used as 

a tool to estimate the nutritional status of populations and to monitor the growth and 

health of children and adults. 

 

Anthropometric assessment for children and adolescents involves the use of growth 

standards and/or growth references for assessing their growth, nutritional status and well 

being (Wang and Chen, 2012 ; WHO, 1995). A growth standard reflects optimal growth, 

suggesting that all children have the potential to achieve that level, while a growth 

reference is simply the distribution used for comparison (WHO,2006). Use of a single 

international reference population allows comparison of results among different nutrition 

and health studies and, thus, greatly assists the interpretation of results. The World Health 

Organization (WHO) proposed in 1978 that a single anthropometric growth reference be 

used both for individual child growth monitoring and for assessing the nutritional status 

of populations (WHO,1978). Irrespective of the reference population used, an 

anthropometric indicator provides a measure of an individual‟s growth status in relation 

to the reference median, expressed either as a percentile, a percentage of the reference 

median, or as a proportion of the standard deviation often referred to as a Z-score. The 

use of a reference population makes it possible to compare the growth status of children 

of different ages and makes it feasible to assess anthropometric status in population 

studies and in surveillance programs. Percentiles and Z -scores in anthropometric 

measures have been widely used to help assess young people‟s nutritional status and 

growth, such as undernutrition (e.g., underweight, stunting and wasting) and 

overnutrition (i.e., overweight and obesity). Often, percentiles (such as the 5th, 85th, 

95th, 97th, 99th percentiles) and Z -scores (e.g., -2 and +2) are used to classify various 

health conditions, and sex-age-specific anthropometric measures cut-points (based on Z -

scores or percentiles).  

 

A large number of studies in the last three decades measured child nutritional status in 

developing countries since the introduction of 1978 WHO/NCHS (National Centre for 

Health Statistics) reference growth charts (WHO, 1978) which was based on data on 

weight and height from a statistically valid sample of infants and children in the United 

States. The use of these charts, however, has never been unanimously accepted 

(especially for children aged 0–24 months) neither for use within the U.S., nor as an 

international standard. Detractors have called attention to several limitations, perhaps 

more importantly the sample used for their construction and in particular, concerning the 

extent to which growth paths depend on feeding practices. As a result of the several 

shortcomings with the 1978 WHO/NCHS reference growth charts, WHO initiated the 

Multicentre Growth Reference Study (MGRS), which between 1997 and 2003 produced a 

new set of references for international comparisons that has become recently available 

(WHO MGRS, 2006). The new charts are based on healthy children from Brazil, Ghana, 

India, Norway, Oman and United States, living under conditions likely to allow the full 
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achievement of their genetic growth potential, whose mothers did not smoke and 

followed the WHO recommended feeding practices. The latest round of the National 

Family and Health Surveys (NFHS-3, 2005-06) in India has used this new international 

reference population released by WHO in April 2006 (WHO Multicenter Growth 

Reference Study Group, 2006) and accepted by the Government of India.  

 

The use of Z -scores is recommended for several reasons. First, Z -scores are calculated 

based on the distribution of the reference population (both the mean and the standard 

deviation); thus, they reflect the reference distribution. Second, as standardized measures, 

Z -scores are comparable across age, sex and measure (as a measure of “dimensionless 

quantity”). Third, a group of Z -scores can be subject to summary statistics such as mean 

and SD and can be studied as a continuous variable. In addition, Z -score values can 

quantify the growth status of children outside of the percentile ranges (WHO, 1995). As 

has been mentioned earlier, Z -scores of +2 and -2, have often been chosen as cut points 

to classify problematic growth/nutritional status such as undernutrition or obesity. These 

criteria are somewhat arbitrary as they are based on statistical distribution rather than on 

the risks of health outcomes. 

 

Despite the popularity and recognized usefulness of nutritional anthropometry in 

assessments of health and nutrition, there have been many discussions and conflicting 

recommendations about the cut-off points to be used for estimating the prevalence of 

undernutrition. Different cut-off points and classification systems have been proposed 

and used for estimating the prevalence of malnutrition in population surveys; thus the 

reported rates are often not comparable and sometimes questionable. This confusion and 

the consequent lack of standard analytical methods have apparently legitimized an 

unfortunate tendency to leave every country open to set up its own criteria, depending on 

the local circumstances, for the sake of practicability. 

The present article proposes a method for estimating the prevalence of undernutrition in a 

population using the anthropometric z-score measurements available from cross-sectional 

population surveys, which is particularly suitable for the developing countries. The 

methodology presented here is an extension of the work by J.O.Mora (Mora, 1989) in 

which the conflicting choices of cut-offs were resolved. The paper is organized as 

follows. Section 2 describes the various anthropometric z-scores, how are these computed 

and WHO classification scheme for prevalence of malnutrition. Section 3 discusses the 

method proposed by J.O.Mora and its limitations regarding its usuability for the 

developing countries. We have carried out exploratory analysis of sample z-scores in 

section 4 for selected Indian states where an attempt is made to show that the 

anthropometric data are substantially nonormal. Section 5 builds up a probability model 

for the z-scores based on the empirical findings and finally, in section 6, a model based 

measure of nutritional deficit is obtained and empirical illustrations are provided. 

2. Anthropometric z-scores and WHO classification scheme 

Three commonly used anthropometric indices are derived by comparing height and 

weight measurements with reference curves: height-for-age, weight-for-age, and weight-

for-height. Although these indices are related, each has a specific meaning in terms of the 
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process or outcome of growth impairment. Deficits in one or more of the anthropometric 

indices are often regarded as evidence of “malnutrition”. The ranges of the deficit of 

physical status based on each index vary significantly across populations. The most 

common approach to evaluate growth performance transforms the anthropometric indices 

into a Z-score (standard deviation scores). The Z-score system expresses the 

anthropometric value as a number of standard deviations or Z-scores below or above the 

reference mean or median value. A fixed Z-score interval implies a fixed height or weight 

difference for children of a given age. For population-based uses, amojor advantage is 

that a group of Z-scores can be subjected to summary statistics such as the mean and 

standard deviation. As we shall see shortly, that the distributions of Z-scores are 

considered for the purposes of such comparisons. 

Let g denote the reference group a child is being compared to, and let xig represent weight 

or height of a specific child i in a group g. When the indicator measures height, the group 

is defined by age and gender. When the indicator measures weight, the reference group is 

identified by gender and either age (in the case of weight-for-age) or height (in the case 

of weight-for-height). To gauge the nutritional status of a child, it is necessary to compare 

the child‟s outcome to a corresponding “normal/standard / reference” outcome for a child 

that belongs to the same group. 

 

Defn. 1. ( WHO/NCHS 1978) 

g

gig
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s
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Z


  

where gx  and sg are, respectively, the mean (or median) and the standard deviation of the 

indicator for children within the same group in the benchmark population. For several 

years, the WHO/NCHS 1978 charts have represented the most widely used reference to 

assess child nutritional status. Their use became especially common after the WHO 

recommended their use for the evaluation of child growth worldwide (Waterlow et al., 

1977; World Health Organization, 1978; Dibley et al., 1987a). When the corresponding 

nutritional indicator in the reference population is approximately normally distributed, z-

scores are very easy to interpret. For instance, if a boy‟s weight-for-height z-score lies 

below -1.645 then his weight is below that of 95% of boys in the reference population 

with the same height. A child is usually identified as stunted if height-for-age z-score is 

below -2, and as underweight or wasted if the z-score for, respectively, weight-for-age or 

weight-for-height is below the same threshold. In India, the WHO/NCHS 1978 charts 

have also been adopted for the calculation of the z-scores (NFHS 2, 1996-97). 

The appropriateness and use of this WHO/NCHS 1978 reference standard was being 

debated for children in developing countries, in particular concerning the extent to which 

growth paths depend on feeding practices. Growing concerns over the use of this 

reference has led to a revision of the charts used for international comparisons (WHO 

2006). Unlike the old references, the new charts have been developed using an LMS 

model (Cole, 1988; Cole and Green, 1992), which takes explicitly into account the 

skewness and non-normality of the distribution of weight and height in the reference 

population. In this approach, the z-score for a given anthropometric measure xig is 

calculated using mean and standard deviation not of the same measures in the reference 
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group, but of a Box–Cox transformation of the measures. In this way, the z-score for 

child i compared to a reference group g is calculated as following. 

 

Defn.2. (WHO 2006) 
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 where Lg is the „„power‟‟ of the Box–Cox transformation and Mg and Sg are the mean 

and the standard deviation of the transformed variable in the reference population. Hence, 

the new charts provide the parameters Lg, Mg and Sg necessary for the calculation of the 

above expression. Such parameters are gender-age specific for the construction of height-

for-age and weight-for-age z-scores, while they are gender-height specific for weight-for-

height. 

Using z-scores, the most commonly used cut-off to define abnormal anthropometry is a 

value of –2, that is, two standard deviations below the reference median, irrespective of 

the indicator used. For example, a child whose height-for-age z-score is less than –2 is 

considered stunted. This provides the basis for estimating prevalence of malnutrition 

(POM) in populations or subpopulations. World Health Organization has also proposed a 

classification scheme for POM. Accordingly, POM in populations or subpopulations is 

assessed by referring to a classification scheme recommended by WHO (WHO,1995) 

which is reproduced below in Table-1. 
 

Table 1. WHO Classification Scheme for Degree of Population Malnutrition 

 

                                        Prevalence of malnutrition 

                                        (% of children <60 months, below –2 z-scores) 

Degree of malnutrition Weight for Age / 

Height for Age 

Weight for Height 

Low  <10  <5 

Medium  10–19  5–9 

High  20–29  10–14 
Very high ≥30  ≥15 

                            Source: WHO 1995. 
 

 

3. Methodological Issues 

Malnutrition refers to all deviations from adequate nutrition, including undernutrition 

(and overnutrition or obesity) resulting from inadequacy of food (or excess of food) 

relative to need (respectively). Malnutrition also encompasses specific deficiencies (or 

excesses) of essential nutrients such as vitamins and minerals. Conditions such as obesity, 

although not the result of inadequacy of food, also constitute malnutrition. The terms 

"malnutrition" and "undernutrition" are often used loosely and interchangeably, although 

a distinction is, and needs to be, made at all times. In the present article, we shall mostly 

restrict our attention to the presence of abnormal anthropometry that is indicative of 

undernourishment which is the thrust of the MDGs in the developing world. 
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Suppose a population of size N is composed of those D who are diseased and N – D who 

are not. In the folklore of epidemiology, the prevalence is defined as  𝑝 =
𝐷

𝑁
 . Similarly, 

the prevalence of childhood malnutrition, is defined as the proportion or percentage of 

children under age five having abnormal anthropometry beyond certain thresholds or cut-

offs. WHO proposed that the normal range for any population should be between plus 

and minus two standard deviation ( 2 S.D.) units of the median, a range that includes 

95.4 per cent of the reference population, and would yield only about 2.3 per cent false 

positives on each side.  

Besides, its statistical justification, the WHO cut-off point, below which the values are 

seen as potentially abnormal, has been further supported by studies of “functional 

outcomes” showing a significant increase in the risk of mortality (Klelmenn and McCord, 

1978; Chen et al, 1980), as well as a decreased immune response when anthropometric 

indicators drop below such a threshold (Reddy et al, 1976). Thus, the WHO 

recommendation has been generally adopted and the cut-off point at two standard 

deviation units below the reference median has been widely accepted and used lately for 

estimating the prevalence of malnutrition in national surveys. Further, anticipating that a 

cut-off point of two standard deviations might dramatically lower prevalence rates of 

malnutrition in developing countries and might tend to underestimate the magnitude of 

the problem, WHO then suggested (WHO, 1983), as part of its methodology for 

measuring change in nutritional status, using either one or two standard deviations as the 

dividing line between normality and abnormality, but adjusting the resulting prevalence 

by subtracting the proportion of cases expected below such a cut-off point in the normal 

distribution.  

Clearly, conflicting recommendations about the cut-off points to be used for estimating 

the prevalence of anthropometric abnormality have profound implications and might be 

misused for non-scientific purposes (Mora, 1989). A floating cut-off point could indeed 

be moved up or down depending on whether the interest is to dramatize the seriousness 

of the problem or to show that it is of much less magnitude. Keller (Keller, 1983) 

contended that “if reasonable simple statistical methods were available, it would be more 

desirable to compare distributions rather than prevalences, which to some degree distort 

biological realities”. Following this, J. O. Mora (Mora, 1989), had developed a simple 

method for estimating a standardized prevalence of child malnutrition from 

anthropometric indicators by comparing the observed and the reference distribution as 

suggested by Keller. The method was based on the assumption that both the distributions 

are normal and under optimal environmental conditions everybody will grow within the 

boundaries of the reference population distributions, so that all individuals growing 

outside of this distribution do so because of environmental constraints. Suppose, the 

standardized Z-score of the observed population or sub-population follows a normal 

distribution with mean μ and standard deviation σ. The estimated standardized prevalence 

(SP) as proposed by Mora can be obtained by using the following formula 

 

𝑆𝑃 =

 
 
 

 
 
Ф 

𝜇 − 𝜎 𝜇2 + 2𝜎2 ln 𝜎 − 2 ln𝜎

1 − 𝜎2
 + Ф 

𝜇𝜎 − 𝜇2 + 2𝜎2 ln𝜎 − 2 ln𝜎

1 − 𝜎2
 ,𝑓𝑜𝑟 𝜎 > 1

2Ф 
𝜇

2
 − 1,𝑓𝑜𝑟 𝜎 = 1.
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 It was shown that for a given distance between curves, the same standardized prevalence 

rate is found irrespective of the cut-off points and as such, the prevalence is a function of 

the distance between the observed and the reference curve and not of the cut-off points. 

When the standard deviation of the observed distribution is also one, the estimated 

standardized prevalence is represented by the shaded area in Fig. 1, i.e. by that portion of 

the observed distribution that is uncovered by the reference population distribution. It is 

for this reason, we shall prefer to call it by nutritional deficit rather than standardized 

prevalence. The author also provided a table to facilitate a rapid assessment of 

standardized prevalence whenever the observed distribution of Z-scores is approximately 

normal. 

 

 
 

A major limitation of the procedure discussed above is that the assumption of normality 

is untenable for the distributions of Z-scores when observed from the developing 

countries. As we shall proceed through the next section we shall examine this issue using 

a battery of statistical test procedures. 

 

 

4. Exploratory Analysis of Anthropometric z-scores 

For the purpose of exploratory analysis, we have considered data on the three 

anthropometric indices, height for age, weight for age, and weight for height from three 

countries India (NFHS 3, 2005-06), Bangladesh (DHS, 2011), and Nepal (DHS, 2011). 

Two states were selected from each of the selected countries initially for this purpose. We 

have calculated (Table 2) univariate descriptive and robust statistics in order to explore 

 Fig. 1. Overlapping of the Gaussian distributions of an anthropometric indicator in the 

observed and in the reference population. The shaded area represents the standardized 

prevalence of abnormality in the observed population. 
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features of the empirical distribution of the z-scores. First three columns of each of these 

tables provide mean, 5% trimmed mean and median of the empirical distribution of each 

of the z-scores. Near equality of these values for a given score would mean a symmetric 

distribution and otherwise with a skewness. In most of states, all the three scores display 

a higher value of mean than either the trimmed mean or median. It may be that the 

outliers or extreme values are responsible to pull it upwards. The skewness and kurtosis 

statistics also provide evidence of disproportionate values at the tails of the respective 

distributions. In few cases, such as, for Meghalaya and Uttar Pradesh, the Weight for Age 

and Weight for Height z-scores give evidence of a negative skewness. The so called 

descriptive statistics are followed by a skewness-kurtosis plot that helped to select which 

distribution(s) to fit among the potential candidates. Figure 2 provides a skewness-

kurtosis plot as the one proposed by Cullen and Frey (1999). On this plot, values for 

common distributions are also displayed to help the choice of distributions to fit to data. 

In order to take into account the uncertainty of the estimated values of kurtosis and 

skewness, the data set was bootstrapped 5000 times. The values of skewness and kurtosis 

corresponding to the bootstrap samples are then computed and reported in blue color on 

the skewness-kurtosis plot.  

 

There exists a vast literature on tests of normality and their statistical properties 

(Lilliefors, 1967; Shapiro and Wilk, 1965; Jarque and Bera, 1980; D‟Agostino and 

Stephens, 1986). The most popular omnibus test for normality for general use is the 

Shapiro-Wilk (SW). The Jarque-Bera (JB) test is the most widely adopted omnibus test 

for normality in economics and related field. The Lilliefors (Kolmogorov-Smirnov) 

(L(KS)) test is the best known omnibus test based on empirical distribution function. 

Being omnibus procedures, SW, JB, L(KS) and many others do not provide insight about 

the nature of deviations from normality e.g. skewness, heavy tails or outliers. Therefore, 

specialized tests directed at particular alternatives are desired in many practical situations. 

In this article, tests of normality (Table 3A) were carried out using various omnibus 

procedures when possible. These omnibus tests are accompanied by various tests (Table 

3B and 3C) of symmetry and directed tests of normality against heavy tailed alternatives 

and outliers (Gel et. al. 2006). Each of these tests are also followed by four goodness of 

fit plots (figure 2, lower panel). All of the results are not reproduced here to save the 

space. The tests of normality overlay a normal curve on actual data, to assess the fit. A 

significant test means the fit is poor. In majority of the cases, our analyses show that 

normality is an untenable assumption or it is reasonably poor. Results as shown in table 

3C suggests that although the symmetry in many of the cases are evident, the empirical 

distributions are characterized by heavier tails or outliers and are substantially 

nonnormal. 
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Figure 3. Cullen and Frey plot (upper panel). Goodness of fit plots (lower panel). 
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Table 2. Descriptive and robust statistics for z-scores 

Height for Age 
Country States/ 

Regions 

mean 5% 

 trimmed 

mean 

median sd skewness kurtosis % 

below 

 -2sd 

Number 

of children 

(weighted) 

India1  -1.87 -1.90 -1.93 1.66 0.398 0.784 48.0 45377 

 Kerala -1.1 -1.14 -1.28 1.42 0.52 1.36 24.5 896 
 Uttar Pradesh -2.18 -2.23 -2.26 1.68 0.46 0.68 56.8 5597 

Bangladesh2  -1.67 -1.70 -1.72 1.40 0.384 1.357 41.3 9217 

 Barisal -1.73 -1.77 -1.79 1.46 0.668 2.364 43.2 1009 

 Dhaka -1.67 -1.70 -1.77 1.42 0.471 1.567 42.6 1533 

Nepal3  -1.71 -1.72 -1.75 1.37 0.167 0.396 40.5 2335 

 Eastern -1.62 -1.63 1.66 1.29 0.074 0.446 39.1 534 

 Central -1.58 -1.59 -1.62 1.40 0.170 0.259 38.2 482 

 

Weight for Age 

Country States/ 

Regions 

mean 5% trimmed 

mean 

median sd skewness kurtosis % 

below 

 -2sd 

Number 

of children 

(weighted) 

India  -1.78 -1.79 -1.78 1.23 0.144 0.422 42.5 45377 

 Kerala -1.22 -1.24 -1.23 1.08 0.21 0.35 22.9 896 
 Uttar Pradesh -1.83 -1.83 -1.80 1.19 -0.01 0.27 42.4 5597 

Bangladesh  -1.61 -1.63 -1.64 1.15 0.275 0.816 36.4 9217 

 Barisal -1.63 -1.65 -1.71 1.14 0.432 0.654 38.5 1009 

 Dhaka -1.56 -1.59 -1.58 1.20 0.381 0.984 35.6 1533 

Nepal  -1.46 -1.46 -1.48 1.10 0.064 0.299 28.8 2335 

 Eastern -1.33 -1.33 -1.33 1.03 0.034 0.241 25.5 534 

 Central -1.38 -1.38 -1.41 1.11 0.138 0.173 28.6 482 

 

Weight for Height 

Country  mean 5% trimmed 

mean 

median sd skewness kurtosis % 

below 

 -2sd 

Number 

of children 

(weighted) 

India  -1.02 -1.02 -0.99 1.29 0.094 1.015 19.8 45377 

 Kerala -0.88 -0.88 -0.86 1.23 0.096 0.16 15.9 896 
 Uttar Pradesh -0.58 -0.55 -0.47 1.31 -0.34 0.88 14.8 5597 

Bangladesh  -0.93 -0.94 -0.96 1.21 0.231 1.296 15.6 9217 

 Barisal -0.90 -0.93 -0.97 1.15 0.406 1.147 14.3 1009 

 Dhaka -0.86 -0.88 -0.90 1.26 0.266 1.014 16.3 1533 

Nepal  -0.67 -0.67 -0.66 1.12 0.002 0.745 10.9 2335 

 Eastern -0.58 -0.59 -0.60 1.12 0.205 0.698 10.3 534 

 Central -0.66 -0.64 -0.69 1.14 -0.097 0.379 11.4 482 

Source: Author‟s own calculation. 1NFHS 3(2005-06), 2DHS 2011, 3DHS 2011 
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Table 3A. Omnibus Tests of Normality for z-scores 

Height for Age 

State Shapiro-Wilk  
(p-value) 

Anderson-Darling 
(p-value) 

Cramer-von Mises 
(p-value) 

Lilliefors(K-S) 
(p-value) 

Pearson chi-square 
(p-value) 

Classical Jarque-Bera 
 (p-value) 

Kerala 0.977 
(0.000) 

5.639 
(0.000) 

0.953 
(0.000) 

0.058 
(.000) 

73.30 
(0.000) 

108.84 
(0.000) 

Uttar 
Pradesh 

NA 9.234 
(0.000) 

1.410 
(0.000) 

0.031 
(.000) 

217.43 
(0.000) 

283.0 
(0.000) 

Barisal 0.976 
(0.000) 

1.965 
(0.000) 

0.291 
(0.000) 

0.044 
(0.000) 

29.99 
(0.315) 

214.83 
(0.000) 

Dhaka 0.981 
(0.000) 

3.660 
(0.000) 

0.596 
(0.000) 

0.038 
(0.000) 

61.36 
(0.001) 

194.57 
(0.000) 

Eastern 0.996 
(0.243) 

0.383 
(0.396) 

0.047 
(0.558) 

0.023 
(0.720) 

25.08 
(0.293) 

4.609 
(0.099) 

Central 0.995 

(0.136) 

0.671 

(0.079) 

0.109 

(0.084) 

0.038 

(0.092) 

26.28 

(0.196) 

3.512 

(0.173) 

Table 3B. Tests of Symmetry for z-scores 

Height for Age 

State MGG 
(p-value) 

Mira 
(p-value) 

Cabilio-Masaro 
(p-value) 

D‟Agostino 
(p-value) 

Kerala 5.119 
(0.000) 

4.814 
(0.000) 

4.841 
(0.000) 

3.995 
(.000) 

Uttar 
Pradesh 

5.04 
(0.000) 

5.05 
(0.000) 

4.92 
(0.000) 

8.583 
(.000) 

Barisal 1.02 
(0.308) 

0.980 
(0.327) 

0.969 
(0.333) 

4.398 
(0.000) 

Dhaka 3.597 
(0.000) 

3.459 
(0.000) 

3.435 
(0.000) 

4.666 
(0.000) 

Eastern 1.028 
(0.311) 

1.005 
(0.315) 

1.012 
(0.311) 

0.466 
(0.641) 

Central 0.841 
(0.401) 

0.826 
(0.409) 

0.819 
(0.413) 

1.011 
(0.312) 

 

Table 3C. Robust Directed Tests of Normality against Heavy-tailed alternatives 

Height for Age 

State Bonett-Seier 
 (p-value) 

SJ Test 
(p-value) 

Robust Jarque-Bera 
(p-value) 

Anscombe-Glynn 
 (p-value) 

Kerala 5.418 
(0.000) 

6.447 
(0.000) 

138.98 
(0.000) 

5.314 
(0.000) 

Uttar 
Pradesh 

5.967 
(0.000) 

6.398 
(0.000) 

299.2 
(0.000) 

7.549 
(0.000) 

Barisal 5.309 
(0.000) 

5.541 
(0.000) 

209.87 
(0.000) 

6.789 
(0.000) 

Dhaka 5.791 
(0.000) 

6.333 
(0.000) 

202.09 
(0.000) 

6.989 
(0.000) 

Eastern 1.249 
(0.212) 

1.377 
(0.096) 

3.945 
(0.139) 

1.877 
(0.061) 

Central 2.035 
(0.07) 

2.205 
(0.023) 

5.317 
(0.07) 

1.163 
(0.245) 

     Source: Author‟s own calculation 
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5. Modeling z-scores with skew normal distribution 

The skew normal distribution, proposed by Azzalani (1985), can be a suitable model for 

the analysis of data exhibiting a unimodal density having some skewness present, a 

structure often occurring in data analysis. The proposed distribution is a generalization of 

the standard normal distribution and the probability density function (pdf) is given by 

𝑓 𝑧; 𝜆 = 2 𝑧  𝜆𝑧 ,     −∞ < 𝑧 < ∞,   (5.1) 

where (x) and (x) denote the N(0,1) density and distribution function respectively and 

we write Z~SN(λ). The parameter λ regulates the skewness and λ = 0 corresponds to the 

standard normal case. The density given by (5.1) enjoys a number of formal properties 

which resemble those of the normal distribution, for example, if X has the pdf, given by 

(5.1), then X
2
 has a chi-square distribution with one degree of freedom. That is, all even  

moments of X are exactly the same as the corresponding even moments of the standard 

normal distribution. For more information, see Azzalini and Capitanio (1999) and Genton 

(2004). A motivation of the skew normal distribution has been elegantly exhibited by 

Arnold et al. (1993). This model can naturally arise in applications as hidden function 

and/or selective reporting model, see Arnold and Beaver (2002). 

A more flexible and suitable class of distributions (Pourahmadi, 2007) incorporating the 

skewness factor, is a location and scale extension of the family defined in (5.1). Let us 

denote the location and scale parameters by ξ and ω respectively, then for any Z~SN(λ), 

define a general SN random variable by 

    𝑌 = 𝜉 + 𝜔𝑍,                                             (5.2) 

and write, Y~SN(ξ, ω, λ) for this random variable. The pdf of Y can shown as 

   𝑓 𝑦;  𝜉, 𝜔, 𝜆 =
2

𝜔
  

𝑦−𝜉

𝜔
   𝜆

𝑦−𝜉

𝜔
                            (5.3) 

and the moment generating function of Y is given by 

                       𝑀𝑌 𝑡 = 𝐸 𝑒𝑡𝑌 = 2𝑒𝑥𝑝 𝜉𝑡 +
𝜔2𝑡2

2
  𝜔𝑡 ,                        (5.4) 

where  =  𝜆  1 + 𝜆2  𝜖 −1, 1 . From (5.4), it follows that: 

 𝐸 𝑌 = 𝜉 + 𝜔𝜇𝑧 ,  𝑣𝑎𝑟 𝑌 = 𝜔2 1 − 𝜇𝑧
2 ,   𝛾1 =

4−𝜋

2
 

𝜇𝑧
3

 1−𝜇𝑧
2 3 2 ,  

and  γ2 = 2 π − 3 
μz

4

 1−μz
2 2 , where μz = δ 2 π , γ1 and γ2denote the standardized 

third and fourth-order cumulants respectively. 

We have carried out the fitting of SN(ξ, ω, λ) using the software library „sn‟ version 0.4-

17 (Azzalini, 2011). The function „sn.em‟ is used for this purpose which is based on EM 

algorithm to locate the maximum likelihood estimates. The estimates obtained using this  

function are very robust, although it generally takes a longer computation time. Table 4 

gives the maximum likelihood estimates of the parameters, the estimates of mean, sd and, 

skewness. We also provide two values of log-likelihood at convergence; the first one 

corresponds to the default setting in which a global maximization is performed, and the 

second corresponds to the setting in which the shape parameter is fixed at 0. The 

maximum of the two leads to the choice of a SN distribution over a normal model. 
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6. Measurement and Estimation of nutritional deficit 

We assume that the probability distribution of an anthropometric z-score follows a 

location-scale skew normal distribution i.e. Y~SN(ξ, ω, λ) with pdf given by (5.2). The 

advantage of such an assumption is not only their close fit to the sampled data on z- 

scores, but also that the reference population, with which it is usually compared to 

measure the degree of prevalence of malnutrition, belongs to the same family and thus 

facilitates the comparison. More importantly, the methodology proposed by Mora ( Mora, 

1989), is thus generalized here, for possible applications when the distributions of the Z-

scores for the observed populations/sub-populations are not normal.  

 

 

Table 4. Skew normal goodness of fit statistics for z-scores 
Height for Age 

State Parameter estimates Estimates of  Log-likelihood 

location scale shape mean sd skewness SN normal 

Kerala -2.43 1.94 1.70 -1.09 1.41 0.36 -1569.7 -1585.4 

Uttar 

Pradesh 

-3.72 2.36 1.72 -2.09 1.71 0.37 -10223.4 -10297.8 

Barisal -3.03 1.97 1.55 -1.71 1.46 0.32 -1495.4 -1508.2 

Dhaka -2.94 1.93 1.52 -1.66 1.44 0.31 -2255.6 -2272.5 

Eastern -2.37 1.49 0.82 -1.62 1.29 0.09 -891.4 -891.8 

Central -2.59 1.72 1.09 -1.58 1.39 0.16 -842.8 -843.9 

 

Weight for Age 

State Parameter estimates Estimates of  Log-likelihood 

location scale shape mean sd skewness SN normal 

Kerala -2.04 1.35 1.18 -1.22 1.08 0.19 -1333.375 -1336.60 

Uttar 

Pradesh 

-2.30 1.34 0.62 -1.73 1.22 0.04 -8509.84 -8510.99 

Barisal -2.68 1.56 1.65 -1.61 1.14 0.35 -1290.3 -1300.5 

Dhaka -2.64 1.63 1.57 -1.55 1.21 0.32 -2034.1 -2050.1 

Eastern -1.79 1.12 0.59 -1.33 1.02 0.04 -770.7 -770.8 

Central -2.11 1.32 0.96 -1.38 1.11 0.12 -732.9 -733.6 

 

Weight for Height 

State Parameter estimates Estimates of  Log-likelihood 

location scale shape mean sd skewness SN normal 

Kerala -1.59 1.42 0.82 -0.88 1.22 0.09 -1452.04 -1452.91 

Uttar 

Pradesh 

0.17 1.56 -1.10 -0.75 1.26 -0.17 -8669.44 -8686.59 

Barisal -1.91 1.53 1.44 -0.91 1.16 0.28 -1304.6 -1313.1 

Dhaka -1.88 1.62 1.30 -0.86 1.26 0.23 -2087.9 -2097.6 

Eastern -1.39 1.38 1.08 -0.58 1.12 0.16 -816.1 -817.8 

Central 0.06 1.34 -0.90 -0.66 1.14 -0.11 -745.8 -746.4 

Source: Author‟s own calculation  
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In order to define a measure of deficit, let us consider the Figure 1. Let τ be the cutoff 

point defined as following 

                   𝜏 = 𝑚𝑖𝑛  𝑦|
2

𝜔
  

𝑦−𝜉

𝜔
   𝜆

𝑦−𝜉

𝜔
 =  𝑦 ≫ 0                                  (6.1) 

i.e. τ is the smallest value of the random variable Y at which the two curves intersect with 

a value of  probability density greater than zero.. Based on the value of τ, we can define a 

measure of deficit as 

                          ∇𝑑𝑒𝑓  𝜏 =  𝑓 𝑦;  𝜉,𝜔,𝜆 𝑑𝑦 −   𝑡 𝑑𝑡
𝜏

−∞

𝜏

−∞
 .                          (6.2) 

Clearly, ∇𝑑𝑒𝑓  𝜏  measures the area of shortfall which lies below the ideal nutritional 

level. Let 𝑓 = 𝑓 𝑦;   , ,𝜆   be the fitted distribution of the z- score under consideration. 

Then, an estimate ∇ 𝑑𝑒𝑓 (𝜏) is obtained by using equations (6.1) and (6.2). The following 

Table 5 provides the estimates of nutritional deficits in selected Indian states using the 

method described above. 

 

Table 5. Estimated nutritional deficit of various z-scores and percentage below -2sd by 

selected states/regions of India, 2005-06, Bangladesh and Nepal 2011. 

 
State Height for Age Weight for Age Weight for Height 

% of ∇  % below -2sd 
 

% of ∇  % below -2sd 
 

% of ∇  % below -2sd 
 

Kerala 38.9 24.5 36.9 22.9 29.9 15.9 

Uttar 

Pradesh 

60.2 56.8 56.8 42.4 22.1 14.8 

Barisal 54.6 43.2 56.2 38.5 33.6 14.3 

Dhaka 53.4 42.6 53.3 35.6 32.0 16.3 

Eastern 53.1 39.1 48.7 25.5 20.8 10.3 

Central 51.2 38.2 48.9 28.6 19.8 11.4 
Source: Author‟s own calculation  

 

 

The results obtained in Table 5 are indicative of the fact that there exist comprehensive 

gaps between the peceived level of undernutrition and the extent of actual nutritional 

deficit. The weight for age indicator, the only anthropometric index selected to assess 

progress towards Millennium Development Goals of halving under five undernutrition by 

2015, is the worst victim; the nutritional deficit with respect to this indicator is estimated 

to be 14 to 23 per cent more than the usual estimated prevalence for the selected 

states/regions. Noticeably, in a progressive state like Kerela in India, it is seen that the 

estimated deficit exceeds by about 14 per cent with respect to all the chosen indicators, a 

result that could have been unidentified otherwise. Figure 4 below depicts the estimated 

shortfall as observed in percentage covered by -2sd cut off of estimated actual deficit. 

Noticeable extents of shortfalls are seen with respect to weight for age and weight for 

height indices. Results are far from satisfaction in terms of the extent of coverage.  
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          Figure 4. Depicts Percentage covered by -2sd cutoff of estimated actual deficit for various nutritional indicators 
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7. Discussion and concluding remarks 

Despite the popularity and recognized usefulness of nutritional anthropometry in 

assessments of health and nutrition, there have been many discussions and conflicting 

recommendations about the cut-off points to be used for estimating the prevalence of 

undernutrition. Different cut-off points and classification systems have been proposed 

and used for estimating the prevalence of malnutrition in population surveys; thus the 

reported rates are often not comparable and sometimes questionable. Researchers 

observed that in practice, a measure that compares the statistical distributions of the Z-

scores for the observed population and the reference, is ideally needed and that would 

resolve the debate. Mora‟s method (Mora, 1989)  is a one step forward towards this end. 

However, the assumptions of normality for the distributions have been found to be 

untenable for the data from developing nations.  

 

In the present work we have moved another step forward from the Mora‟s method by 

introducing a location-scale family of skew normal distribution, for the Z-scores of the 

study populations, which includes normal distribution as a member of this class. In this 

sense, the method proposed here can be seen as a generalization of Mora‟s method and 

can suitably be applied to study undernutrition in the developing countries. We have 

applied the proposed method to latest NFHS/DHS survey data obtained from the selected 

states/regions from three countries, India, Bangladesh and Nepal. The results of our 

analysis suggest that in most of the cases degree of prevalence as measured by the 

percentage of children below -2sd of reference population, do not substantially differ 

from the values as reported(IIPS and Macro International, 2007, MOHP et al, 2012, 

NIPORT et al, 2013), however, there are shortfalls of about 10 – 15  per cent as against 

their actual deficits. These findings are clearly indicative of the fact that there exist 

comprehensive gaps in the perceived level of undernutrition and the extent of nutritional 

deficit for the developing nations. The task of combating the problem of nutrition with 

various intervention policy measures necessarily be formulated by accounting for such 

gaps. 

In conclusion, we observe that distributional lessons help visualizing the nutritional status 

at different extremes/tails in a quantifiable manner. While analyzing health inequality 

among children under age five we should also examine the proximate and distant 

determinants of malnutrition and how do they vary over the entire support of the 

distribution. Policy intervention strategies should address the determinants depending on 

in which part of the distribution the children are located.  
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