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Abstract 
 

The growing number of persons living beyond age 80 underscores the need for accurate 
measurement of mortality at advanced ages for population forecasting.  One approach to study 
mortality patterns at advanced ages is based on Life table Aging Rate (LAR) after age 80.  If mortality 
decelerates at older ages then the LAR values should decline with age rather than remain unchanged 
as in the case of Gompertz law. The LAR approach was applied to age-specific death rates for Canada, 
France, Sweden and the United States available in HMD. It was found that for all studied 24 single-year 
birth cohorts LAR does not change significantly with age in the age interval 80-100 years suggesting 
the validity of Gompertz law. Simulation study demonstrated that the apparent decline of LAR after age 
80 found in earlier studies may be related to biased estimates of mortality rates measured in too wide 
5-year age interval.  

 
 
 
1. Introduction 

Accurate estimates of mortality at advanced ages are essential for improving forecasts of mortality 
and predicting the population size of the oldest old age group.  Earlier studies suggest that the 
exponential growth of mortality with age (Gompertz law) is followed by a period of deceleration, with 
slower rates of mortality increase (Greenwood and Irwin 1939; Horiuchi and Wilmoth 1998; Thatcher 
1999; Thatcher, Kannisto and Vaupel 1998).  It is believed that mortality at advanced ages has a 
tendency to deviate from the Gompertz law (Gavrilov and Gavrilova 1991), so that the logistic model is 
suggested for fitting human mortality after age 80 years (Horiuchi and Wilmoth 1998; Wilmoth et al. 
2007).   

Recent media reports (Financial Times, September 11, 2012; Wall Street Journal, March 2, 2012) 
revealed that official projections significantly overstated the number of centenarians both in the United 
States and the UK.  Incorrect assumptions about mortality trajectories at advanced ages may be 
partially responsible for these projection inaccuracies.  

In this study we analyze mortality trajectories at advanced ages with the life table aging rate 
approach using data on cohort mortality from the Human Mortality Database. Human Mortality 
Database became a traditional resource for demographers and actuaries.  Life table aging rate (LAR) 
approach is often used in the study of mortality at older ages and was applied in the seminal paper 
devoted to the study of mortality deceleration (Horiuchi and Wilmoth 1998).  We show that the choice of 
hazard rate estimator in LAR calculation may be crucial for conclusion about mortality trajectories at 
advanced ages. Comparison of different hazard rate estimators is made by computer simulation.  
 

 
Analyzing mortality trajectories using life table aging rate  
In 1990 Ansley Coale and Ellen Kisker proposed a method to calculate mortality schedules at advanced 
ages (Coale and Kisker 1990). This method is based on calculating a measure of mortality change that 
the authors called the age-specific rate of mortality change with age, or kx. This measure is defined in 
the following way: 
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kx = ln( )m x ln( )m x 1  
 
where mx is mortality rate at age x. 
 
If kx is a constant function of age then mortality follows the Gompertz law. If kx declines with age then 
there is a mortality deceleration.  Similar measure was also proposed by Horiuchi and Coale (Horiuchi 
and Coale 1990) and later this measure was called a life table aging rate (LAR) (Horiuchi and Wilmoth 
1997).  

This approach, based on calculating mortality change, was applied in several earlier studies of 
mortality trajectories at advanced ages (Horiuchi and Coale 1990; Horiuchi and Wilmoth 1998; Thatcher 
et al. 1998; Wilmoth 1995). These earlier studies demonstrated that values of kx tend to decline after 
age 80 years suggesting mortality deceleration at advanced ages. Most of these studies used cross-
sectional data. As we noted earlier, mortality deceleration may be caused by age misreporting at older 
ages and previous studies of mortality trajectories have been conducted almost twenty years ago.  
Thus, it is reasonable to repeat these earlier analyses using data on more recent extinct or almost 
extinct birth cohorts.  In this paper we analyze mortality data for the following four countries: Canada, 
France, Sweden and the United States. Analyses are based on age-specific cohort death rates for the 
most recent extinct birth cohorts available in the Human Mortality Database (1894, 1896 and 1898 birth 
cohorts).  Linear regression model was applied to verify if kx is declining with age after age 80.  

Figure 7 presents age pattern of kx for Swedish male 1896 birth cohort.  Note that values of kx do 
not show any decline with age up to very advanced ages and after age 100 years random variation of 
kx is very high.  Overall, the kx age pattern is in a good agreement with the Gompertz law and does not 
demonstrate any significant decline with age.   
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Figure 7. Age‐specific rate of mortality change with age, kx, Swedish males, 1896 birth cohort. 
 
 

To quantify this finding, we conducted linear regression analyses for kx as a dependent variable and 
age as a predictor variable in the age interval 80-100 years. If kx does not change with age then the 
slope coefficient for this regression model should not be significantly different from zero. Table 2 
presents regression slope coefficients and corresponding p-values for all 24 studied single-year birth 
cohorts.  
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As follows from Table 1, the slope coefficients for all studied birth cohorts are not significantly 
different from zero.  Thus, the shape of mortality curve after age 80, as measured by the kx function, 
appears to be consistent with the Gompertz model.   

These results do not agree with earlier studies that showed linear decline of kx after age 80 years 
(Horiuchi and Wilmoth 1998; Thatcher et al. 1998; Wilmoth 1995). There may be several reasons why 
these studies found mortality deceleration at advanced ages.  In most cases these studies analyzed 
cross-sectional data combined into 5-year or 10-year time intervals, which may be prone to mortality 
deceleration due to secular decline of mortality.  
 
 
Table 1. Slope parameter estimates and corresponding p‐values for linear regression model of kx  as a function of 
age*, by country, sex and birth cohort.  

Birth cohort 

1894 1896 1898 Country Sex 

slope p-value slope p-value slope p-value 

F -0.00023 0.914 0.00004 0.984 0.00066 0.583 Canada 

M 0.00112 0.778 0.00235 0.499 0.00109 0.678 

F -0.00070 0.681 -0.00179 0.169 -0.00165 0.181 France 

M 0.00035 0.907 -0.00048 0.808 0.00207 0.369 

F 0.00060 0.879 -0.00357 0.240 -0.00044 0.857 Sweden 

M 0.00191 0.742 -0.00253 0.635 0.00165 0.792 

F 0.00016 0.884 0.00009 0.918 0.000006 0.994 USA 

M 0.00006 0.965 0.00007 0.946 0.00048 0.610 
* All regressions were run in the age interval 80‐100 years. 
 
 

Some studies analyzed cohort data aggregated into wide 5-year or 10-year birth cohorts. Such 
aggregation may result in spurious mortality deceleration if mortality in aggregated single-year birth 
cohorts is significantly different from each other. To test this hypothesis, we calculated kx values using 
age-specific death rates for 5-year birth cohorts available in HMD.  Table 2 shows slope parameters 
and corresponding p-values for linear regression model of kx as a function of age in the age interval 80-
100 years. Note that in the case of aggregated birth cohorts there are indeed some cohorts where kx is 
declining with age.   

 
 

Still only 4 out of 32 cohorts show negative slope coefficients suggesting decline in kx with age and 
mortality deceleration. This example demonstrates that even in countries with smaller populations 
compared to the United States mortality deceleration at advanced ages is rather an exception than a 
rule.  Thus, we may conclude that the analysis of age-specific rates of mortality change for four 
countries suggests that in most cases mortality deceleration at advanced ages is not supported by 
existing data.  These results are mixed, because for some populations (French women) mortality 
deceleration does exist for all studied aggregated birth cohorts while in other countries (Canada) we do 
not observe mortality deceleration at all.   
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Table 2.  Effect of birth cohort aggregation on mortality deceleration. Slope parameter estimates and 
corresponding p‐values for linear regression model*, by country, sex and 5‐year birth cohort. 

Birth cohort 

1880-84 1885-89 1890-94 1895-99 Country Sex 

slope p-value slope p-value slope p-value slope p-value 

F -0.00150 0.145 -0.00069 0.372 0.00015 0.851 -0.00002 0.983 Canada 

M -0.00247 0.135 -0.00065 0.642 0.00094 0.306 0.00022 0.850 

F -0.00167 0.074 -0.00273 0.047 -0.00191 0.005 -0.00165 0.002 France 

M -0.00072 0.818 -0.00082 0.515 -0.00049 0.661 -0.00047 0.412 

F -0.00043 0.759 -0.00036 0.749 -0.00122 0.185 -0.00210 0.122 Sweden 

M 0.00141 0.663 -0.00234 0.309 -0.00127 0.330 -0.00089 0.696 

F -0.00131 0.113 -0.00030 0.654 -0.00027 0.685 0.00004 0.915 USA 

M -0.00187 0.008 -0.00050 0.417 -0.00039 0.399 0.00002 0.972 
* All regressions were run in the age interval 80‐100 years. 
 
 
More important factor resulting in spurious decline of kx is related to use of inappropriate measures of 
hazard rate at advanced ages. In the earlier cited studies of old-age mortality the values of kx were 
calculated not for one-year but for 5-year age intervals: 
 

kx =
ln( )m x ln( )m x 5

5
 

where mx represents 5-year mortality rate.  
 
It should be noted that 5-year age interval is very wide for analyzing mortality (and hazard rate) at 
advanced ages when mortality is particularly high. In this case the assumption about uniform 
distribution of deaths over the age interval (used for this estimate of hazard rate) does not work. As a 
result, hazard rate estimates become biased downward resulting in decline of 5-year kx values with 
age. As an example of these effects, we present in Figure 8 the result of computer simulation using 
survival data, which follow the Gompertz model with typical parameters (see Appendix A for more 
detail). In this example we calculate mortality rates for 5-year age interval and then calculate age-
specific mortality change function (kx) using formula provided in (Wilmoth 1995). Theoretically we 
should expect to obtain constant value of kx because our simulated data follow the Gompertz law. 
Instead we get declining pattern of kx with age (see Figure 8), which is similar to trajectories reported in 
the previous publications (Horiuchi and Wilmoth 1998; Wilmoth 1995). 
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Figure 8. Age‐specific rate of mortality change with age, kx, by age  interval for mortality calculation. Simulated 
data assuming that hazard rate follows the Gompertz law.   
 
Thus, there is a possibility that the declining pattern of kx with age found in earlier studies may be 
partially related to spurious mortality deceleration caused by using too wide age intervals for hazard 
rate estimates.  It should be noted that in the first publication on this topic the authors used one-year 
smoothed estimates of mortality rates and found similar declining age pattern for kx (Horiuchi and Coale 
1990). There are two possible explanations for this phenomenon. One possibility is that the quality of 
age reporting at advanced ages for the studied populations was not sufficiently high for these time 
periods (1960s and 1970s).  Another possibility is that the authors used cross-sectional data, which are 
more prone to demonstrate apparent mortality deceleration.  
 
We may conclude that the analysis of age patterns of LAR for more recent single-year birth cohorts 
shows no evidence of mortality deceleration in the age interval 80-100 years.  
 
 
4. Discussion  

Study of age-specific rate of mortality change used as a measure of mortality deceleration found no 
mortality deceleration in the age interval 80-100 years for single-year birth cohorts of Canada, France, 
Sweden and the U.S. Thus, data suggest that mortality after age 80 follows the Gompertz model not 
only for the United States but also for countries with smaller population (like Sweden)  

It should be noted that some researchers already found no mortality deceleration at advanced ages, 
but did not conduct a systematic study of this phenomenon. For example, Stauffer presents mortality of 
German cohorts, which shows no mortality deceleration up to age 90 years (Stauffer 2002). Other 
researchers who found no mortality deceleration at older ages for Canadian cohorts believed that this 
result is associated with problems of quality in their data (Bourbeau and Desjardins 2006). On the other 
hand, several systematic studies of mortality at older ages conducted in the 1990s came to a 
conclusion that mortality does decelerate after age 80 (Horiuchi and Wilmoth 1998; Thatcher 1999; 
Thatcher et al. 1998; Wilmoth 1995).  

There are several reasons why earlier studies, including our own research (Gavrilov 1984; Gavrilov 
and Gavrilova 1991), reported mortality deceleration and mortality leveling-off at advanced ages  
(Horiuchi and Wilmoth 1998; Kannisto 1994; Robine and Vaupel 2001; Thatcher 1999; Thatcher et al. 
1998). First, mortality deceleration may be caused by age misreporting in death data for older persons 
(Coale and Kisker 1986; Gavrilov and Gavrilova 2011). Earlier studies, conducted more than ten years 
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ago, used data for older birth cohorts when age reporting was not particularly accurate (Jdanov et al. 
2008), even for such developed countries as the U.K (Gallop and Macdonald 2005).   

Second, mortality deceleration may be a consequence of data aggregation. Most developed 
countries have much smaller populations compared to the United States and hence studies of mortality 
at advanced ages for these countries have to combine together many single-year birth cohorts thereby 
increasing the heterogeneity of the sample.  

Finally, some researchers use inappropriate estimates of hazard rates when they study mortality at 
very high ages when hazard rate is high and changes rapidly. Many studies present information for 
age-specific probability of death rather than hazard rate (Gallop and Macdonald 2005; Gampe 2010; 
Modig, Drefahl and Ahlbom 2013; Robine and Vaupel 2001). It is not surprising that probability of death 
has a tendency of deceleration at advanced ages when mortality is high, taking into account that this 
mortality indicator has theoretical upper limit equal to one (see Appendix A). For example, a study of 
mortality among supercentenarians demonstrated that probability of death for this group does not 
increase with age (Robine and Vaupel 2001). Some authors do not distinguish between probability of 
death and hazard rate in their calculations (Le Bras 2005).  

Mortality rates calculated for wide age intervals also produce biased estimates of hazard rates. For 
example, use of five-year mortality rates may produce a spurious evidence of mortality deceleration 
when age-specific rate of mortality change is analyzed (see previous section).  Loss of individuals to 
follow-up in longitudinal study may also be a factor contributing to apparent mortality deceleration at 
advanced ages (Manton, Akushevich and Kulminski 2008).  Appendix A compares accuracy of various 
estimates of hazard rate at advanced ages and provides a degree of deviation from the correct 
theoretical values of hazard rate.  It appears that age misreporting, use of inappropriate estimates of 
hazard rates and perhaps data heterogeneity could lead to downward biases in mortality estimates at 
older ages reported in previous studies.  

The results obtained in this study may be important for mortality forecasting, particularly if mortality 
is predicted for birth cohorts. These results also may be significant for projections of the size of older 
population.  As we already noted, inappropriate assumptions about mortality at advanced ages may be 
partially responsible for these projection inaccuracies of older population in the United States and the 
United Kingdom. .  

 
5. Conclusion 
Few people survive to advanced ages and, in standard mortality tables, it is frequently necessary to 
compile data over an entire decade to obtain a sufficiently large sample. Our work shows that the 
observed deceleration in measured mortality rates could result in part from the heterogeneity of the 
data. The second problem we examined is frequently overlooked by demographers and actuaries: the 
problem of correct estimation of the instantaneous mortality rate (hazard rate). At the most advanced 
ages, the rates of death are so high that it is impossible to assume that the number of dying is 
distributed uniformly within the studied one-year age intervals. As a result, the estimates of mortality 
rates (or central death rates) are biased downward at advanced ages. And finally, the third problem is 
related to the fact that elderly people tend to exaggerate their age. In the United States, this may have 
impaired the accuracy of mortality rate estimates in the past. 

 
 
Appendix A.  
Hazard rate (mortality force) estimation at advanced ages: A simulation study 
 
A conventional way to obtain estimates of mortality at advanced ages is a construction of demographic 
life table with probability of death (qx) as one of important life table functions. Although probability of 
death is a useful indicator for mortality studies, it may not be the most convenient one for studies of 
mortality at advanced ages.  First, the values of qx depend on the length of the age interval Δx for which 
it is calculated.  This hampers both analyses and interpretation.  Also, by definition qx is bounded by 
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unity, which would inevitably produce apparent mortality deceleration when death rates are particularly 
high.  

More useful indicator of mortality at advanced age is instantaneous mortality rate (mortality force) or 
hazard rate, μx which is defined as follows: 
 

μ x =
dN x

N x dx
=

d ln( )N x

dx ≈
Δ ln( )N x

Δx  
 
where Nx is a number of living individuals exposed to risk of death at age x. It follows from the definition 
of hazard rate that it is equal to the rate of decrease of logarithmic survival function with age. In 
actuarial practice, hazard rate is often called mortality force as it was done in the original paper by 
Benjamin Gompertz (Gompertz 1825). Hazard rate does not depend on the length of the age interval (it 
is measured at the instant of time x), has no upper boundary and has a dimension of rate (time-1).  It 
should also be noted that the famous law of mortality, the Gompertz law, was first proposed for fitting 
the age-specific hazard rate function rather than probability of death (Gompertz 1825).  
 
The empirical estimates of hazard rates are often based on suggestion that age-specific mortality rate 
or death rate (number of deaths divided by exposure) is a good estimate of theoretical hazard rate.  
One of the first empirical estimates of hazard rate was proposed by George Sacher  (Sacher 1956; 
Sacher 1966):   

μ x =
1
Δx

[ ]ln( )l
x Δ x

2

ln( )l
x Δ x

2
 + 

=
1
Δx

ln

l
x Δ x

2

l
x Δ x

2
 + 

 
This estimate is unbiased for slow changes in hazard rate if ΔxΔμ x << 1  (Sacher, 1966) and was 
shown to be the maximum likelihood estimate (Gehan and Siddiqui 1973). A simplified version of 
Sacher estimate (for small age intervals equal to unity) is often used in demographic studies of 
mortality:  μx = -ln(1-qx).  This estimate was initially suggested by Gehan who called it a ‘Sacher’ 
estimate (Gehan 1969; Gehan and Siddiqui 1973). It is based on the assumption that hazard rate is 
constant over age interval and is shifted by one half of a year to younger ages compared to the original 
Sacher estimate.  

Another empirical estimate of hazard rate, often used in life table construction (Klein and 
Moesberger 1997), is the actuarial estimate, which is calculated in the following way (Kimball 1960):  
 

             

μ x =
2q x

Δx ( )2 q x
=

2
Δx

lx Δ x l x

l x Δ x l x +  
 

This estimate assumes uniform distribution of deaths over the age interval and is bounded by 2/∆x, 
so this is not the best estimate of hazard rate at extreme old ages when death rates are particularly 
high (Gavrilov and Gavrilova 1991). 

At advanced ages, when death rates are very high, the assumptions about small changes in hazard 
rate or a constant hazard rate within the age interval become questionable.  The same is true for the 
assumption of uniform distribution of deaths within the age interval.  

We conducted a simulation study in order to compare and evaluate the accuracy of different 
empirical estimates of hazard rate.  For this purpose values of survivors at each age were calculated 
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assuming that age-specific hazard rate follows the Gompertz law. The theoretical equation was drawn 
by integrating the Gompertz formula (Gavrilov, Gavrilova and Nosov 1983):  
 

                   

N x

N 0
=

N x0

N 0
exp

a
b

( )eb x eb x0
 

 
where Nx/N0 is the probability of survival to age x, i.e. the number of hypothetical cohort at age x divided 
by its initial number N0. a and b are the parameters of Gompertz equation (see formula 1). The 
simulation assumed that the Gompertz law works for the entire age interval and the initial cohort size is 
equal to 1011 individuals.  The Gompertz parameters are typical for the U.S. birth cohorts: slope 
coefficient (b) = 0.08 year-1; a= 0.0001 year-1. The main focus of this study was on older ages beyond 
90 years. Accuracy of various hazard rate estimates (Sacher, Gehan, and actuarial estimates) and 
probability of death is compared at ages 100 and 110 years.  
 
Figure 9 shows theoretical and empirically estimated values of hazard rate after age 90 using the 
Sacher estimate of hazard rate and one-year probability of death. Note that the Sacher estimates 
practically coincide with theoretical mortality trajectory. At the same time, probability of death strongly 
underestimates mortality after age 100.  
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Figure 9. Comparison of Sacher estimate of hazard rate with one‐year probability of death using simulated data 
based on the Gompertz mortality model.  
 
Figure 10 compares theoretical values of hazard rate with empirical estimates of hazard rate using 
actuarial estimate of hazard rate (equivalent to the age-specific death rate or mortality rate, mx). The 
actuarial estimates underestimate mortality at later age (110 years) compared to one-year probability of 
death.  
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Figure 10. Comparison of actuarial estimate of hazard rate with Gehan estimate of hazard rate using simulated 
data based on the Gompertz mortality model. 
 
 
Table 3 summarizes the results of our simulation study. It demonstrates that the Sacher estimate of 
hazard rate is the best one for use at advanced ages. These results underscore that the choice of 
proper hazard rate estimate is of paramount importance when mortality trajectory at advanced ages is 
analyzed.  Sacher estimate turned out to be the most accurate estimate for advanced ages while one-
year probability of death deviates from hazard rate function after age 85 years. Unfortunately, standard 
statistical packages do not use the Sacher estimate in their calculations of hazard rate.   
 
 
Table 3. Comparison of different estimates of hazard rate with theoretical simulated values of hazard rate based 
on the Gompertz model. 

Estimate of hazard rate Hazard rate estimate at age 
100 years 

Hazard rate estimate at age 
110 years 

Probability of death 11.6% understatement 26.7% understatement 
Sacher estimate 0.1% overstatement 0.1% overstatement 
Actuarial estimate 1.0% understatement 4.5% understatement 

 
 
Some statistical packages may produce biased estimates of hazard rates at advanced ages. This is the 
case for the Nelson-Aalen hazard rate estimates provided by sts command of Stata statistical software 
(StataCorp 2009). In fact, the Nelson-Aalen method was initially proposed for cumulative hazard rate 
estimation (particularly for right-censored survival data) (Klein and Moesberger 1997). In Stata, hazard 
rate estimation is made by taking the steps of the Nelson-Aalen cumulative hazard function (Cleves et 
al. 2008), so that for each observed time of death, xj the estimated hazard contribution is:  
 
ΔÂAH ( )xj = ÂAH ( )xj ÂAH ( )xj 1  
 
where             iis an estimate of cumulative hazard function.  ÂAH ( )x
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Figure 11.  Comparison of monthly and yearly Nelson‐Aalen estimates of hazard rate using simulated 
mortality data based on the Gompertz model 

 
The way of hazard rate estimation conducted in Stata is similar to calculation of life table probability 

of death (StataCorp 2009), i.e. the number of deaths in the studied age interval is divided by the 
number alive at the beginning of age interval.  At advanced ages when mortality is high and for 
relatively wide age intervals, number of persons exposed to risk of death in the middle of age interval is 
substantially lower than the number alive at the beginning of age interval. This would result in 
downward bias in hazard rate estimates at advanced ages, which is observed when the Nelson-Aalen 
estimates are applied to yearly age intervals. Simulation studies showed that the bias in hazard rate 
estimation increases with the increase of the age interval (Kimball 1960).  Narrowing the age interval for 
hazard rate estimation from one year to one month helps to improve the accuracy of hazard rate 
estimation.  For smaller monthly age intervals, the problem described above is not so crucial and the 
Nelson-Aalen method still can be applied.  Figure 11 shows Nelson-Aalen hazard rate estimates 
produced by sts command of Stata for yearly and monthly age intervals using our simulated Gompertz 
mortality data.  Note that hazard rates estimated for yearly age intervals demonstrate substantial 
mortality deceleration while hazard rate estimates calculated for monthly age intervals follow the 
Gompertz model.  

 
Mortality deceleration and even mortality decline at advanced ages may occur when hazard rates are 
being smoothed using kernel smooth procedure. Figure 12 shows mortality trajectory at advanced ages 
when Stata kernel smoothing procedure (with default settings) is applied to our simulated Gompertz 
mortality data.  
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Figure 12.  Simulated mortality data based on the Gompertz model after the kernel smooth procedure provided 
by the Stata statistical package. 
 
Smoothing procedures assume mortality averaging over rather wide age interval (bandwidth), which 
leads to mortality underestimations at very advanced ages when hazard rates grow very rapidly.  
 
These examples suggest that even standard estimates of hazard rates provided by statistical packages 
should be treated with caution when mortality is studied at very advanced ages.  
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