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Abstract 

 

In terms of competing risks Long-term Mixture Survival Models are widely used 

for the analysis of individuals who may never experience the considered type of 

failure. If we add the possibility of a lasting therapy success. some individuals 

have to be treated as immune to a specific cause of failure or to be defined as 

long-term survivors. In case of multi- or bivariate cause-specific survival data 

different dependence structures can be modeled with different copula functions. 

There are two main methodical goals for modeling marginal distributions to be 

considered: First flexibility and second masked causes. We propose a Bivariate 

Mixture Long-term Survival model based on the Farlie-Gumbel-Morgenstern 

(FGM) copula. Data simulations will be provided with SEER Breast Cancer Data. 
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1. Background 

 

Competing Risks Models are popular in medical and public health studies. Still a 

challenge, however, is the application of cause-specific survival models in case of 

missing data or misclassification of cause of death. Masking is present if the 

considered cause of failure or cause of death is not or only partially known 

(Flehinger et al. 2002; Craiu and Lee, 2005; Lu and Liang, 2008; Sen et al. 2010, 

Roman et al. 2012).  

Long-term Survival Mixture Models have been applied for the analysis of 

individuals who may never experience the considered type of failure. Under the 

condition of an unobserved prognostic factor, some individuals will be treated as 

immune to a certain cause of failure or be defined as long-term survivors (Maller 

and Zhou, 1996, Roman et al. 2012; Louzada et al. 2012). 

 

The also applied parametric or semi-parametric versions of the Proportional 

Hazard Model (PH) or the Mixed Proportional Hazard Model (MPH) will be also 

used in advance on practice. The structure of the properties for these models 

seems easy to explore but their application to real data is mostly tedious. The 

assumption on the marginal distributions of the latent variables and their 

dependence structure is mostly restrictive, under some conditions inadequate.  
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To prevent such conditions researchers have to assume independence of the latent 

variables in these models. 

An alternative to assuming independence would be a access the joint dependence  

by the means of a copula function (e.g. Escalera and Carrière, 2003; Lo and 

Wilke, 2009; Wienke, 2011). With different families of copulas available, the 

model allows for flexible specification of the dependence structure between 

competing random variables (Nelsen,2006). 

 

 

. 

2. The Model 

 
Following Maller and Zhou (1996), here we consider a model based on two 

components,  one component representing the failure or the survival time of 

individuals susceptible to a certain risk and the other component representing the 

not susceptible individuals, the so called immune ones (see also Francisco et al. 

2012; Roman et al., 2012) 

                                                              ��������� = 	������� + �1 − 	� 	���	����   
 

with Sj as the Survival function for the non-susceptible (or cured) individuals, S0 

as the Survival function for susceptible (or non-cured) individuals and pj the 

probability (or cured fraction) of an individual to belong to the non-susceptible 

group. 

 

��	������ = ��� > �� = 1, ∀� ≥ 0, �ℎ��	�����	����	���	��	 �! �����	�":				 
��������� = 	� + �1 − 	� 	���	����                                                                                    

Follow the bivariate Archimedean copula with a single parameter  

 

$ %����&��&�, ����'��'�( = 	����&��&� + ����'��'� − 1 + $) *1 − ����&��&�,1 − ����'��'�	+ 

 

can be also applied for Clayton (1978), Ali-Mikhail-Haq (1978), or Frank copula 

(1979). 
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In comparison to the alternate mixture approach the bivariate long-term survival 

model with Farlie-Gumble-Morgenstein distribution (FGM) Copula Model 

(Conway, 1983) will be defined with the joint survival function of the copula $, 

with the density function �,  -0,1.' for / ∈ 1.  

 

Then, let ��&,�'� denoted as the paired failure	����� and 	�����  denote the 

marginal long-term survival functions and the marginal long-term density 

function of ��,�	 = 1,2 (see also Maller and Zhou, 1996, Roman et al. 2012, 

Louzada et al. 2012). 

 
 

������&,�',� = $,�����&��&�, ����'��'�	�, �&,�', > 0 

������&,�',� = �,�����&��&�, ����'��'�	�, 	����&	��&�����'��'��&,�', > 0 

The Farlie-Gumble-Morgenstern copula (FGM) was first considered by Conway 

(1983) as the application to a Bayesian approach estimates the effect of three 

copula structures by modeling the dependence effect on prevalence and 

performance test parameters (Bairamov and Kotz, 2002; Fisher and Klein, 

2007;Amblard and Girard, 2008; Tovar Cuevas and Archor, 2011). 
 $/�3, 4� = 34-1 + /�1 − 3��1 − 4�. 

	
where 0 ≤ 3, 4	 ≤ 1	��6 − 1	 ≤ / ≤ 1, for / > 0 if dependence structure 

for	3	��6	4 is positive and / < 0 if depence structure for 3	��6	4 is negative 

 

Consider ��&,�',� for FMG copula the joint long-term survival of ��&,�',� will be 

given with 	
������&,�',� = ����&��&�, ����'��'� 81 + / %1 − ����&��&�( %1 − ����'��'�(9 

 

 

Then / parameter measures the intensity of the dependence between the lifetimes.  

If / = 0, ����&��&� = ����'��'� is valid then the random variables	�&	and �'	are 

independent 

 

 

Copula functions rely on sophisticated methodical advances because their focus 

will not be on correlation coefficients but more over on scale invariant measures 

of association. These measures of association are functions of a measure of 

dependence between marginals. Then the association parameter can be defined 

with different values specified on the copula. In comparison to that measures of 

associations like the Pearson’s correlation coefficient are bounded. 

Modeling copulas will be arranged with the Gibbs Sampler belonging to the class 

of the Markov Chain Monte Carlo (MCMC) methodology.  
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For ��	 we assume a Weibull mixture distribution with the parameters :� and ;�  

and    
 

	� = �<	�=�� + =&�>�/ %1 + �<	�=�� + =&�>�( 

 

                                with ;�~A�BB�	���, ��� and :�~A�BB�	��� , 6��     

 

 

 

3. Data 

 

The long-term survival mixture approach will be applied for Breast Cancer Data 

provided by the SEER Cancer Statistic Data Base National Cancer Institute, 

DCCPS, Surveillance Research Program, and Cancer Statistics Branch that were 

released in April 2013.  

The data set contains information on the incidence by race, gender and age for 

different period of time. We use cause specific mortality data including all types 

of cancer. The SEER public use dataset includes the vital status of breast cancer 

patients from 1992-2010 (n=69,990 in Situ). 

The mixture cure model defines:  ��will be susceptible (non-cured) individuals, 

identified as breast cancer case and with ��  will be non-breast cancer including all 

masking cases. 

 

Simulation will be performed with OpenBUGS.  (For more details in the program 

code: see Spiegelhalter et al. 2007) 

 

The results from the parameter estimates are presented in table1. 

 
 

4. Results 

 

Table 1:   SEER Breast Cancer Data,   

Summary results from the posterior distribution, mean, 

standard deviation (SD)  and HPD (95%) interval for the FGM copula 

 
 

 

 

 

 

 

 

 

 

 

 

 

Parameter Mean SD HPD (95%)

Time 1 α1 1.457 0.158 (1.1089; 1.589)

λ1 0.052 0.018 (0.031; 0.073)

β01 -2.134 0.993 (-4.534; -0.675)

β11 0.754 0.976 (-1.452; 2.871)

Time 2 α2 1.564 0.176 (1.286; 1.834)

λ2 0.052 0.019 (0.030; 0.074)

β02 -0.781 0.511 (-1.547; 1.034)

β12 0.843 0.574 (0.641; 0.984)

Copula ϕ 0.673 0.345 (0.031; 0.978)
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5. Conclusion 

 

The major gains of this approach yield on the high flexibility to account for 

different dependence structure. The eventual computation problems can be 

neglected.      

     The estimates should be realized on a hierarchical two-step procedure:  

     First the marginals have to be estimated, then in a second step the copula to  

     perform the joint  distribution. On the other hand the identification problem for 

     the joint distribution is still present.  

     Misclassification in cause of failure should be account for because the bias    

     has serious effects on the estimates and determine lower statistical power  

     type of misclassification also drives the bias:  

     Non differential misclassifications have less impact on the estimation bias  

     than the systematic misclassifications (Sarfati et al. 2010).  

 

 

 

 

References 

 

Ali, M.M., Mikhail, N.N., Haq, M.S. (1978) A class of bivariate distributions 

including the bivariate logistic. J. Multivariate Anal. 8, 405-412. 

Amblard, C.; Girard, S. (2008) A new extension of bivariate FGM copulas. 

Metrika, Secaucus, v.70, p.1-17. 

Bairamov, I., Kotz, S. Dependence structure and symmetry of Huang-Kotz 

FGM distributions and their extensions. (2002) Metrika, Secaucus,56,(1), p.55-72. 

Clayton, D.G. (1978). A model for association in bivariate life-tables and its 

application in epidemiological studies of family tendency in chronic disease 

incidence. Biometrika 65, 141-151. 

Conway, D.A. (1983). Farlie-Gumbel-Morgenstern distributions. In Encyclopedia 

of Statistical Sciences (Edited by Kotz and N.L. Johnson), Volume 3, 28-31. 

Wiley, New York 

Craiu R.V. and Lee T.C.M. (2005). Model Selection for the Competing-Risks 

Model with and without masking. Lifetime Data Anal (2006) 12:21–33 

Flehinger, B. J., Reiser, B. and Yashchin, E. (2002). Parametric modeling for 

survival with competing risks and masked failure causes. Lifetime Data Anal. 8, 

177-203. 

Escarela, G. and Carrière, J.F. (2003). Fitting competing risks with an assumed 

copula. Statistical Methods in Medical Research 12, 333-349. 

Fischer, M., Klein, I. (2007) Constructing generalized FGM copulas by means of 

certain univariate distributions. Metrika, Secaucus, 65(2), p.243-260. 

Frank, M.J. (1979) on the simultaneous associativity of F(x,y) and x+y-F(x,y). 

Aequationes Mathematicae 19, 194-226. 

Hsieh, J.J. and Huang Y.T. (2012). Regression analysis based on conditional 

likelihood approach under semi-competing risks data. Lifetime Data Analysis 18, 

302-320. 



 

 6 

Maller, R.A. and Zhou, X. (1996). Survival Analysis with Long-term Survivors. 

Wiley, NewYork. 

Li, Y., Tiwari, R.C. and Guha, S. (2007): Mixture cure survival models with 

dependent censoring. Journal of the Royal Statistical Society 69, 285-306 

Louzada, F., Suzuki, A.K., Cancho, V.G., Prince F.L. and Pereira, G.A. (2012) 

The Longterm Bivariate. Survival FGM Copula Model: An application to a 

Brazilian HIV Data. Journal of Data Science 10, 511-535. 

Lo, S.M.S. and Wilke, R.A.(2009). A copula model for dependent competing 

risks. Discussion Papers in Economics No.09/01 University of Nottingham. 

Lu W. and Liang Y. (2008): Analysis of competing risks data with missing cause 

of failure under additive hazard model. Statistica Sinica 18, 219-234. 

Nelsen (2006) An introduction to Copulas, 2nd Edition, Springer, New York 

National Cancer Institute DCCPS Surveillance Research Programme, 

Surveillance, Epidemiology and End Results (SEER) Programme 

(www.cancer.seer.gov) Research Data (1973-2010) (Released April 2013) 

Rodrigues, J., Cancho, V.G., de Castro, M. and Louzada-Neto, F. (2009). On the 

unification of long-term survival models. Statistics and Probailities Letters 79, 

753-759. 

Roman, M., Louzada, F., Cancho, V.G. and Leite, J.G. (2012). A New Long-term 

Survival Distribution for cancer Data. Journal of Data Science 10, 241-258. 

Sarfati D, Blakely T, Pearce N.(2010) Measuring cancer survival in populations: 

relative survival vs cancer-specific survival Int J Epidemiol. 39(2):598-610 

Spiegelhalter, D.J., Thomas, A., Best, N. and Lunn, D. (2007) Open BUGS: User 

Manual, version 3.0.2 MRC Biostatistics Unit, Cambridge. 

http://mathstat.helsinki.fi/openbugs/ 

Wienke , A. (2011). Frailty Models in Survival Analysis. Chapman and Hall, 

Boca Raton 

Zhang, S., Zhang, Y., Chaloner,K. and Stapleton, J.T.(2010). A copula model for 

bivariatehybrid censored survival data with application to the MACS study. 

Lifetime Data Analysis 16, 231-249. 


