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Abstract1

Lifetime fertility is the total number of children (or sometimes of female children) to which a2

woman gives birth over her lifetime. The net reproductive rate R0 is the expectation of lifetime3

fertility. The total fertility rate (TFR) is the expectation conditional on the woman surviving4

through her childbearing years. Both R0 and TFR can be calculated from age- or stage-classified5

demographic models. Because it is an expectation, R0 provides no information on variability.6

Here, I present and apply a new approach, based on the theory of Markov chains with rewards,7

that provides all the moments of the distribution of lifetime reproduction. The approach applies8

to age- or stage-classified models, to constant, periodic, or stochastic environments, and to any9

kind of reproductive schedule. As examples, I calculate and compare these statistics for models10

in which fertility depends on age, or on age and parity, using data from Sweden in 1970 and the11

Czech Republic in 1950.12

1 Introduction13

1.1 Lifetime fertility14

Lifetime fertility is the total number of children, or sometimes the number of female children, a15

woman has over her lifetime. The net reproductive rate R0 measures the expectation of lifetime16

fertility. As is well known (Cushing and Zhou, 1994; Caswell, 2001, 2009), R0 expressed as female17

offspring per female is also the population growth rate per generation (not per unit of time), and18

is an indicator function for population growth, in that population growth is positive if and only if19

R0 > 1. It is calculated from age-classified models as20

R0 =

∫ ∞
0

`(x)m(x)dx, (1)

where `(x) is surivorship to age x and m(x) is fertility at age x (Rhodes, 1940), and from stage21

classified models as22

R0 = max eig
[
F (I−U)−1

]
, (2)

where F is a matrix of stage-specific fertilities and U is a matrix giving transition probabilities23

of individuals among stages (Cushing and Zhou, 1994; Caswell, 2001, 2009; de Camino-Beck and24

Lewis, 2007). In evolutionary demography, R0 is sometimes used as a measure of fitness, although25
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this works only under certain circumstances (Metz, 2008). In epidemiology, R0 gives the expected26

number of secondary infections following the introduction of a single infectious individual into a27

susceptible population (Heesterbeek, 2002). The infection can spread and produce an outbreak if28

and only if R0 > 1.29

Because it is an expectation, R0 provides no information on that baseline level of variability.30

My goal here is to present a general and tractable calculation of all the moments of lifetime fer-31

tility, applicable to stage- or age-classified populations, for arbitrary distributions of stage-specific32

reproduction. Although I will not address it here, it applies to constant, periodic, and stochas-33

tic environments (Caswell, 2011). The calculations use a mathematical framework (Markov chains34

with rewards) that has many potential applications to questions in addition to lifetime reproductive35

output.36

Notation. Matrices are denoted by upper-case bold symbols (e.g., P), vectors by lower-case bold37

symbols (e.g., ρ). Some block-structured matrices are denoted by, e.g., P. Vectors are column38

vectors by default. The transpose of P is PT. The vector 1 is a vector of ones. The diagonal39

matrix with the vector x on the diagonal and zeros elsewhere is denoted D(x). The expected value40

is denoted by E(·), the variance by V (·), the coefficient of variation by CV (·) and the skewness41

by Sk(·). The Hadamard, or element-by-element, product of matrices A and B is denoted by42

A ◦B. Transition matrices of Markov chains are written in column-to-row orientation, and hence43

are column-stochastic.44

1.2 The approach: Markov chains with rewards45

The method used here was introduced in Caswell (2011) and applied there to a variety of species.46

We use an absorbing Markov chain to describe the life cycle, and associate a “reward” with each47

possible transition among the states of the Markov chain. Death appears in the model as an48

absorbing state, or possibly multiple absorbing states (e.g., representing causes of death). The49

transition matrix of this absorbing chain can be written50

P =

 U 0

M I

 (3)
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where U is the transient matrix (dimension s × s) and M is a matrix of mortality rates. I will51

assume throughout that the dominant eigenvalue of U is less than 1, so that an individual beginning52

in any transient state will eventually be absorbed (i.e., will eventually die) with probability 1.53

In a Markov chain with rewards, an individual moving from state j to state i collects a reward rij .54

In the present application, the reward corresponds to reproduction. Markov chains with rewards55

were introduced by Howard (1960) to analyze Markov decision processes. In his development, the56

reward rij was a fixed quantity. Here, however, I will consider the rij to be random variables with57

specified statistical properties (Benito, 1982). Fixed rewards follow as a special case.58

1.3 Reproduction as a reward59

In age-classified demographic models, reproduction between t and t+ 1 is a function of the age at60

time t, independent of the transition made by the individual between t and t+1. If this is so, the rij61

will depend only on j. In an age-parity model, reproduction is associated with the transition from62

one parity state to the next. In this case, rij will depend explicitly on both i and j. The analysis63

here also assumes that the dead do not reproduce, so rij = 0, for all j that represent absorbing64

states.65

2 Analytical methods66

As an individual moves through the stages of the life cycle, it accumulates reproductive rewards.67

The goal of our analysis is to calculate the statistical properties (mean, variance, skewness) of68

the accumulated lifetime reward. The solution to this problem is provided by an simple set of69

recurrence relations (Caswell, 2011).70

Define ρ as the vector (dimension (s+1)×1) of accumulated rewards as a function of the initial71

stage of the individual. The vector of kth moments of the entries of ρ is denoted ρk, where72

ρk =

(
E
[
ρki
] )

. (4)
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The rewards rij are random variables. The matrix of the kth moments of the rij is denoted Rk:73

Rk =

(
E
[
rkij

] )
. (5)

Caswell (2011) proved that the moment vectors ρi can be calculated recursively as follows.74

Let P be the transition matrix of the Markov chain, let Rk be the matrix of kth moments of75

the transition-specific rewards. Calculations are referenced to a terminal time T . The first three76

moments of the accumulated reward satisfy77

ρ1(t+ 1) = (P ◦R1)
T 1 + PTρ1(t) (6)

ρ2(t+ 1) = (P ◦R2)
T 1 + 2 (P ◦R1)

T ρ1(t) + PTρ2(t) (7)

ρ3(t+ 1) = (P ◦R3)
T 1 + 3 (P ◦R2)

T ρ1(t) + 3 (P ◦R1)
T ρ2(t) + PTρ3(t) (8)

for t = 0, . . . , T − 1, with ρ1(0) = ρ2(0) = ρ3(0) = 0. In general, the mth moments of accumulated78

rewards are given by79

ρm(t+ 1) =
m∑
k=0

(
m

k

)
(P ◦Rm−k)T ρk(t) (9)

with ρm(0) = 0. The combination of the assumptions that P has the structure (3) and that rij = 080

for all absorbing states j means that every individual will eventually be absorbed in a state in which81

future rewards are zero; thus ρ1(t) will converge to a limit as T →∞; this limit is the expectation82

of lifetime rewards calculated over the entire lifetime of every individual. See Caswell (2011) for83

proofs and further references.84

The first moment ρ1 gives the mean lifetime reproductive output. The variance, standard85

deviation, coefficient of variation, and skewness of lifetime reproductive output are calculated from86

the moment vectors87

V (ρ) = ρ2 − ρ1 ◦ ρ2 (10)

SD (ρ) =
√
V (ρ) (11)

CV (ρ) = D (ρ1)
−1 SD (ρ) (12)

Sk (ρ) = D [V (ρ)]−3/2 (ρ3 − 3ρ1 ◦ ρ2 + 2ρ1 ◦ ρ1 ◦ ρ1) . (13)
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The variance is useful because it can be partitioned additively among sources. The standard88

deviation cannot be partitioned in this way, but it has the advantage of appearing in the same units89

as ρ. The CV scales the standard deviation relative to the mean, and hence is dimensionless. The90

CV is also the square root of Crow’s (1958) index of the opportunity for selection; this provides a91

upper bound on the rate of increase of mean fitness, if fitness is measured by lifetime reproduction92

and all the variance in reproduction is genetic. Finally, the skewness, which is dimensionless,93

measures the symmetry of the distribution of rewards. Positive skewness implies a long tail of94

positive values, and vice versa.95

The ith element of the vector ρ gives the lifetime reproductive output of an individual of age i;96

this can be referred to as the remaining lifetime accumulation.97

Several authors in the widely scattered literature on Markov chains with rewards have addressed98

the variance, but not the complete set of moments, of accumulated rewards. (e.g., Sladkỳ and van99

Dijk, 2005; Benito, 1982).100

3 Analysis of age-dependent fertility101

Age-dependent fertility is parameterized by the vector p of age-specific survival probabilities and102

the vector f of age-specific fertilities. The model follows the standard structure of an age-classified103

Leslie matrix. A surviving individual moves to the next age class, hence the transition matrix U104

contains survival probabilities on the subdiagonal and zeros elsewhere (Figure 1a):105

U =



0 0 0 0

p1 0 0 0

0 p2 0 0

0 0 p3 0


(14)

(here written for 4 age classes).106

The reward matrices are defined from the vector f of age-specific fertilities. Ignoring multiple107

births, the number of offspring at age j is a Bernoulli random variable with moments108

E[rij ] = fj (15)
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E
[
r2ij
]

= fj (16)

E
[
r3ij
]

= fj . (17)

Thus the reward matrices containing the moments of offspring production are109

Rk =



fk1 fk2 fk3 fk4 0

fk1 fk2 fk3 fk4 0

fk1 fk2 fk3 fk4 0

fk1 fk2 fk3 fk4 0

fk1 fk2 fk3 fk4 0


k = 1, 2, 3 (18)

(again, for the case with four age classes).110

As an example, I analyze a historical sequence of mortality and fertility for the human population111

of Sweden from 1891 to 2007 (Human Mortality Database, 2013; Human Fertility Database, 2013).112

This period included two world wars, the 1916 flu epidemic, and a health transition sufficient to113

raise female life expectancy at birth from 53 to 83 years.114

4 Analysis of fertility dependent on age and parity115

The life cycle graph for a population in which individuals are classified by age and parity is shown116

in Figure 1b. The Markov chain matrix appropriate to this classification is derived using the117

vec-permutation methodology (Hunter and Caswell, 2005; Caswell, 2011).118

We begin by defining age classes 1, . . . , ω and parity states 1, . . . , s. Transitions among parity119

states for age class i are described by a s× s matrix given by120

B(i) =



1− q1(i) 0 0 0

q1(i) 1− q2(i) 0 0

0 q2(i) 1− q3(i) 0

0 0 q3(i) 1


i = 1, . . . , ω (19)

(shown here for s = 4 parity classes). The quantity qj(i) is the probability of transition from parity121
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class j to j + 1 for an individual in age class i.122

For ages less than the age at first reproduction, B(i) = Is, and it is impossible to advance to123

the next parity class. The entry in the bottom right corner corresponds to an open final parity124

class. The parity transition probabilities qi are available for parity 0, 1, 2, 3, 4, and 5+ from the125

age-parity fertility tables in the Human Fertility Database Human Fertility Database (2013).126

Transitions from one age class to the next for parity state j are given by a ω × ω matrix127

M(j) =



0 0 0 0

p1(i) 0 0 0

0 p2(i) 0 0

0 0 p3(i) 0


i = 1, . . . , s (20)

(shown here for ω = 4 age classes). The matrix entry pi(j) is the surival probability of an individual128

in age class i and parity class j. In the absence of parity-specific mortality data, all the M(j) will129

be equal.130

The Markov chain describing the joint dynamics of age and parity is created from the block131

diagonal matrices132

B =


B(1)

. . .

B(ω)

 parity state transitions (21)

M =


M(1)

. . .

M(s)

 age transitions (22)

The transient matrix Ũ and the transition matrix P̃ are then133

Ũ = KT M K B (23)

P̃ =

 Ũ 0

1T − 1TŨ 1

 (24)
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Where the row vector 1T − 1TŨ contains the age- and parity-specific probabilities of death. The134

matrix K is the vec-permutation matrix (also called the commutation matrix) of order (s, ω) (Hen-135

derson and Searle, 1981; Magnus and Neudecker, 1979; Hunter and Caswell, 2005).136

Rewards, in the form of reproduction, are obtained when an individual advances from one parity137

state to the next (Figure 1b). The reward matrices corresponding to the parity transition matrix138

(19) are139

Rj(i) =



0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 qs(i)


i = 1, . . . , ω

j = 1, 2, 3
(25)

The entry qs(i) in the lower right corner is the reward obtained by treating reproduction in the140

open parity interval as a Bernoulli random variable.141

The reward matrix corresponding to age-parity transition matrix P̃ is a block-structured matrix142

constructed from the Rj(i):143

R̃j =



Rj(1) · · · Rj(ω) 0

...
...

...

Rj(1) · · · Rj(ω) 0

0s×1 · · · 0s×1 0


(26)

The analysis of lifetime reproduction now proceeds using (6)–(13), using the Markov chain144

matrix P̃ and the reward matrices R̃1, R̃2, and R̃3.145

The result is a set of moment vectors ρi, of dimension (sω + 1) × 1, that give the moments of146

lifetime reproduction as a function of current age and parity.147

5 Applications: Sweden and Czech Republic148

The results of the age-specific and the age-parity-specific fertility models can be examined in seveal149

different ways. One of these, the analysis of temporal trends, will be presented elsewhere (van150

Daalen and Caswell in prep.). Here, I examine the age patterns of the mean and variation in151

lifetime fertility, for two countries, selected (more or less arbitrarily) to represent two different152
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mortality and fertility situations. Sweden in 1970 had a period female life expectancy at birth of153

77.2 years, and a TFR of 1.9. The Czech Republic in 1950 had a life expectancy of 66.8 years and a154

TFR of 2.8. The results may hint at patterns to be expecte comparing countries in the earlier and155

the later stages of a fertility transition. Period life tables were obtained from the Human Mortality156

Database (2013), and age-parity fertility tables from the Human Fertility Database (2013).157

The results are shown in a series of figures, organized as follows:158

1. Age trajectories of the mean, standard deviation, coefficient of variation, and skewness of159

lifetime reproduction for Sweden 1970 (Figure 2).160

2. Age trajectories of the mean, standard deviation, coefficient of variation, and skewness of161

lifetime reproduction for Czech Republic 1950 (Figure 3).162

3. Bar plots showing the interaction of age and parity in determining the statistics of lifetime163

reproduction for selected ages, for Sweden 1970 (Figures 4 and 6).164

4. Bar plots showing the interaction of age and parity in determining the statistics of lifetime165

reproduction for selected ages, for Czech Republic 1950 (Figures 5 and 8).166

A few patterns are obvious from these comparisons. In both Sweden and Czech Republic, the167

mean and standard deviation of remaining lifetime reproduction decline with age (no surprise in168

the former; the latter is not as easily predictable). When variation is measured relative to the169

mean, there is a dramatic increase in the CV with age. The skewness follows the same pattern. In170

both countries, then, remaining lifetime reproduction becomes more uncertain and highly positively171

skewed at ages breater than about 35 (Figures 2 and 3).172

The age-parity-specific model shows similar patterns, but there is a striking difference between173

Sweden and Czech Republic. For Sweden, the mean, standard deviation, CV, and skewness in174

lifetime reproduction are highest for parity 0, and lower for higher parity states. The pattern is175

the opposite in the Czech Republic; higher parity women have a higher expectation and standard176

deviation of lifetime reproduction.177

The effects of parity are far from trivial. At the same age, differences in parity may change178

the mean, standard deviation, and CV of lifetime reproduction by a factor of 3 or more, and the179

skewness by a factor of 5.180
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6 Discussion181

6.1 Variability and heterogeneity are not the same thing182

Empirical measurements of lifetime fertility (in any species) typically reveal variation — often183

large amounts of variation — among individuals. The distribution is often positively skewed, with184

a long tail of rare individuals producing more than the average number of offspring; e.g., many185

examples in Clutton-Brock (1988) and Newton (1989). The observed variability and skewness of186

lifetime fertility is sometimes interpreted as evidence of heterogeneity among individuals. However,187

variability in lifetime fertility is to be expected even in the absence of heterogeneity.188

Demographic variation in lifetime fertility arises from three sources. One source is individual189

stochasticity: stochastic variation among individuals in the pathways they take through the life190

cycle (Caswell, 2009). A cohort of identical individuals, experiencing identical vital rates at every191

stage, will differ in how long they live and how long they spend in each stage (Caswell, 2009). A192

second source of variation is within-stage variation in reproduction. A cohort of identical individu-193

als, in the same stage, experiencing the same probability distribution of stage-specific reproduction,194

will differ in how many offspring they produce. The analysis here includes both sources. These195

stochastic processes are collectively called individual stochasticity Caswell (2009, 2011). They pro-196

duce variation even if all individuals are absolutely identical, experiencing the same vital rates197

at every age or stage. The results presented here obtained in exactly this way; every individual198

experiences the same probabilities as captured in P and the Ri. Thus these results provide cannot199

be used to infer differences among women due to heterogeneity.200

Of course, unobserved heterogeneity does exist; individuals are genuinely different from each201

other in ways not captured by age, or by age and parity. If individuals are different, they will expe-202

rience different transition probabilities (P) and/or rewards (Ri). Heterogeneity may reflect fixed203

differences (e.g., genetic differences, or differences in local environment among individuals of sessile204

species), or differences that develop over time (e.g., accumulated damage caused by environmental205

factors). In order to compare the contributions of heteregenity and individual stochasticity, the206

heterogeneity must be incorporated into the Markov chain model. This has been done for mortality207

models based on heterogeneous frailty (Caswell, 2014), and will be pursued for fertility in a future208

paper.209
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8 Figures252

Reward =
1  w/prob fi

0  w/prob 1-fi

(a) Age-dependent fertility

Parity 0

1

2

3

Reward = 1

(b) Age-parity-dependent fertility

Figure 1: Life cycle structures for (a) age-dependent fertility and (b) age-parity-dependent fertility, showing
the rewards dependent on stages (for the first case) and on transitions (for the second case).
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Figure 2: The mean (above) and standard deviation (below) of lifetime reproductive out put for Sweden
in 1970. Graphs in the left column show statistics of age-specific lifetime reproduction. The right column
shows age-parity-specific lifetime reproduction. Values for parity states greater than 0 are shown from age
20 onwards. Continued on next figure.
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(d) Parity-dependent

Figure 2: (continued) The coefficient of variation (above) and skewness (below) of lifetime reproductive
out put for Sweden in 1970. Graphs in the left column show statistics of age-specific lifetime reproduction.
The right column shows age-parity-specific lifetime reproduction. Values for parity states greater than 0 are
shown from age 20 onwards.
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(c) Age-dependent
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(d) Parity-dependent

Figure 3: The mean (above) and standard deviation (below) of lifetime reproductive out put for Czech
Republic in 1950. Graphs in the left column show statistics of age-specific lifetime reproduction. The right
column shows age-parity-specific lifetime reproduction. Values for parity states greater than 0 are shown
from age 20 onwards. Continued on next figure.
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(a) Age-dependent
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(b) Parity-dependent
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(c) Age-dependent
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(d) Parity-dependent

Figure 3: (continued) The coefficient of variation (above) and skewness (below) of lifetime reproductive out
put for Czech Republic in 1950. Graphs in the left column show statistics of age-specific lifetime reproduction.
The right column shows age-parity-specific lifetime reproduction. Values for parity states greater than 0 are
shown from age 20 onwards.
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(a) Mean
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(b) Standard deviation
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(c) CV
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(d) Skewness

Figure 4: Statistics of lifetime reproduction as a function of age and parity for Sweden in 1970.
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(a) Mean
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(b) Standard deviation
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(c) CV
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Figure 5: Statistics of lifetime reproduction as a function of parity and age for Czech Republic in 1950.
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Figure 6: Statistics of lifetime reproduction as a function of parity and age for Sweden in 1970.
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Figure 7: Czech Republic 1950

Figure 8: Statistics of lifetime reproduction as a function of parity and age for Czech Republic in 1950.
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