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Abstract1

BACKGROUND: The gamma-Gompertz model is a fixed frailty model in which baseline mor-2

tality increases exponentially with age, frailty has a proportional effect on mortality, and frailty3

at birth follows a gamma distribution. Mortality selects against the more frail, so the marginal4

mortality rate decelerates, eventually reaching an asymptote. The gamma-Gompertz is one of a5

wider class of frailty models, characterized by the choice of baseline mortality, effects of frailty,6

distributions of frailty, and assumptions about the dynamics of frailty.7

OBJECTIVES: To develop a matrix model to compute all the statistical properties of longevity8

from the gamma-Gompertz and related models.9

METHODS: I develop a matrix version of the gamma-Gompertz model using the vec-permutation10

matrix formulation for age-stage models.11

RESULTS: The model permits calculation of the mean, variance, coefficient of variation, skew-12

ness and all moments of longevity, the marginal mortality and survivorship functions, the dynamics13

of the frailty distribution, and other quantities. The matrix formulation extends naturally to other14

frailty models. I apply the analysis to the gamma-Gompertz model (for humans and laboratory15

animals), the gamma-Makeham model, and the gamma-Siler model, and to a hypothetical dynamic16

frailty model characterized by diffusion of frailty with reflecting boundaries.17

The matrix model permits partitioning the variance in longevity into components due to het-18

erogeneity and to individual stochasticity. In several published human data sets, heterogeneity19

accounts for less than 10% of the variance in longevity. In laboratory populations of five inverte-20

brate animal species, heterogeneity accounts for 46% to 83% of the total variance in longevity.21

∗Paper presented at the PAA Annual Meeting, May 2014
† c©2014 by Hal Caswell
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1 Introduction52

The gamma-Gompertz (G-G) model is one of a class of models that investigate the effects on survival53

and longevity of cryptic heterogeneity — heterogeneity that is either unobservable or unobserved54

— in mortality (e.g. ??????). The goal of this paper is to present a matrix formulation that55

permits easy computation of all the properties of the G-G model, and of other related models for56

heterogeneity in mortality.57

The G-G model specifies a baseline age-specific mortality rate and modifies this baseline by58

a factor, called frailty, that reflects the heterogeneity among individuals. The baseline mortality59

function is the Gompertz model, in which mortality increases exponentially with age t,60

µ(t) = aebt. (1)

Frailty is introduced as a proportional hazard multiplier z; the mortality of an individual with61

frailty z at age t is62

µ(z, t) = zµ0(t) (2)

where µ0(t) is the baseline mortality schedule.63

The dynamics at any age of a cohort subject to such a mortality model depend on the distri-64

bution of frailty. Let that distribution at age t be π(z, t). Because frailty is cryptic, observations65

on the cohort reveal not the individual mortality schedules, but rather the marginal mortality rate66

µ∗(t) =

∫
π(z, t)µ(z, t)dz (3)

The survivorship function of an individual of frailty z is67

S(z, t) = exp

(
−
∫ t

0
µ(z, x)dx

)
(4)

= S0(t)
z (5)

where S0(t) is the survivorship resulting from the baseline mortality schedule µ0(t). The marginal68

survivorship function is69

S∗(t) =

∫
π(z, 0)S(z, t)dz. (6)

The dynamics of the cohort differ from the dynamics of any frailty class because the distribution70

of frailty changes as the cohort ages (?). The more frail individuals tend to die sooner, and the71

cohort is progressively dominated by individuals of lower frailty. The distribution of fraility is72

π(z, t) =
π(z, 0)S(z, t)∫
π(z, 0)S(z, t)dz

. (7)

In the G-G model, frailty is a fixed property of an individual, and the cohort begins life with73

frailty distributed according to a gamma distribution74

z ∼ gamma(k, λ) (8)

with shape parameter k and scale parameter1 λ. The mean and variance of z are E(z) = k/λ and75

V (z) = k/λ2. Thus, when E(z) = 1, the distribution is given by gamma
(
1/σ2, 1/σ2

)
.76

1The probability density function is

gamma(k, λ) =
1

Γ(k)λk
zk−1e−z/λ. (9)
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The marginal mortality rate (3) for the G-G model is a sigmoid function of age,77

µ∗(t) =
aebt

1 + aσ2

b (ebt − 1)
(10)

(?), converging to an asymptote at b/σ2 as t gets large. Thus, the G-G model is an attractive78

explanation for the widely observed pattern of decelerating increase in mortality with age, in both79

humans and other species (e.g., ????).80

Although it is simple to state, and widely used, deriving the consequences of the G-G model81

is mathematically challenging. ? has recently obtained an expression for life expectancy at birth,82

by integrating the survivorship function (24). The result, a function of the Gompertz parameters83

a and b and the gamma distribution parameters k and λ, is written in terms of the Gaussian84

hypergeometric2 function 2F1:85

e0(a, b, k, λ) =
1

bk
2F1

(
k, 1; k + 1; 1− 1

bλ

)
(11)

Life expectancy, however, is only one of many demographic properties implied by a mortality86

model. My goal here is to present a matrix formulation that provides all the moments of longevity,87

various measures of life disparity, and the full dynamics of the joint distribution of age and frailty.88

It will become apparent from the construction of this model that it applies equally to a much89

broader class of frailty models, and I will present examples.90

Section 2 derives the matrix model, using methods developed for cases in which individuals91

are jointly classified by age and stage. Section 3 derives the fundamental matrix, the moments92

of longevity, the distribution of age at death, and other indices from the matrix model including93

(Section 3.4) the dynamics of the frailty distribution over the life of the cohort. Section 4 analyzes94

an example from ?. Section 5 discusses some interesting generalizations and explores several other95

examples.96

2 The matrix formulation of the gamma-Gompertz model97

Notation. In what follows, matrices are denoted by upper-case boldface letters, and vectors by98

lower-case boldface letters. Where necessary, the dimensions of matrices and vectors are denoted99

by subscripts; thus In is an identity matrix of order n and 1n is a n× 1 vector of ones. The vector100

ei is the ith unit vector. The symbol ◦ denotes the Hadamard, or element-by-element product. The101

symbol ‖x‖ denotes the 1-norm of the vector x. The number of age classes is ω and the number of102

frailty groups is g.103

The matrix G-G model is an age-stage classified model in which stages correspond to frailty104

classes. Age-stage classified matrix models have been analyzed in other contexts by ??? and ?. The105

model is created using the vec-permutation formalism (?) and analyzed using absorbing Markov106

chain theory (???)107

Note that two parameterizations of the gamma distribution are widely used. Equation (9) is common in demography.
Matlab uses the parameterization

gamma(k, θ)

where k is a shape parameter and θ is a rate parameter. In this parameterization, E(z) = kθ and V (z) = kθ2. Thus
in Matlab the distribution with mean equal to 1 is gamma

(
1/σ2, σ2

)
.

2For more on the Gaussian hypergeometric distribution, see ? Abramowitz and Stegun (1965, 15.1.1), or the
online version in the NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/15.
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To construct the matrix G-G model, let us introduce some notation. Age is described by a108

set of discrete age classes 1, . . . , ω. The baseline mortality rates are contained in a vector µ0 of109

dimension ω × 1. For the Gompertz mortality model, the baseline mortality rate vector is110

µ0 = a


e0b

e1b

e2b

...

e(ω−1)b

 (12)

Frailty is described by a set of g discrete frailty classes; the frailty values of these classes are111

given by a g × 1 vector z. To create the frailty classes, first specify a maximum frailty, where the112

cumulative gamma distribution reaches some high value; say, 0.9999. Since very high values of113

frailty are rapidly eliminated, this end of the distribution is, in practice, not very important. Then114

specify a minimum value of frailty as some very small number; for the applications reported here,115

a value on the order of 10−7 was adequate. Since individuals with very low frailty will persist for116

a long time in the population, it is important that zmin be small.117

Experience suggests that logarithmically spaced values between zmin and zmax work well, because118

they provide more detail in the frailty distribution at the low end, precisely where individuals will119

persist the longest. An alternative is to evenly divide the inverse of the cumulative distribution120

function, so that values are most closely spaced where the concentration of initial probability is121

greatest. Given the vector z of frailty classes, the vector of mortality rates by age, for frailty class122

i, is123

µi = ziµ0 (13)

The distribution of individuals among frailty classes at age t is given by the vector π(t); the124

initial frailty distribution of the cohort is given by π(0). In the matrix G-G model, π(0) is a discrete125

gamma distribution with mean of 1 and a specified variance.126

2.1 Constructing transition matrices and the vec-permutation model127

To construct the age-stage model, define a survival matrix for each frailty class, and a matrix of128

frailty transitions for each age class, as follows.129

1. Create a survival matrix Ui for each frailty class i. It contains survival probabilities on the130

first subdiagonal and zeros elsewhere, and is of dimension ω × ω.131

Ui =


0 0 · · · 0

e−µ(zi,0) 0 · · · 0
...

. . .
...

0 · · · e−µ(zi,ω−1) 0

 (14)

2. Create a matrix Dj describing transitions among frailty classes for each age class j. In the132

gamma-Gompertz model, frailty does not change, so Dj = Ig for all j.133

3. Create block-diagonal matrices U and D by placing the Ui (respectively, Dj) on the diagonal134

with zeros elsewhere. Both matrices are of dimension ωg × ωg.135

U =

 U1 · · · 0
...

. . .
...

0 · · · Ug

 D =

 D1 · · · 0
...

. . .
...

0 · · · Dg

 (15)
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In the gamma-Gompertz model, D = Iωg.136

The state of the cohort at age t is given by a vector ñ(t), which is derived from the array137

N (t) =

 n11 · · · n1g
...

...
nω1 · · · nωg

 (16)

that describes the abundance of all age-frailty categories. The population vector is138

ñ = vecN T; (17)

that is,139

ñ =



n11
...
n1g

...

nω1
...
nωg


(18)

The ith block of entries in ñ contains a sub-vector giving the abundance of the frailty classes within140

age class i.141

The joint age-frailty composition of the cohort is projected as142

ñ(t+ 1) = Ũñ(t) (19)

where the projection matrix is143

Ũ = DKUKT (20)

In equation (20), K (to be more precise, Kω,g) is the vec-permutation matrix, or commutation144

matrix (??); see ? for a demographic description.145

Because frailty is fixed in the gamma-Gompertz model, Ũ reduces to Ũ = KUKT. However, it146

is good practice to retain the matrix D as a reminder of its potential use when frailty is dynamic147

rather than static.148

2.2 The absorbing Markov chain149

The matrix Ũ is the transient matrix of an absorbing Markov chain ????. The transition matrix150

of this chain is151

P =

(
Ũ 0

M̃ I

)
(21)

where M is a mortality matrix describing the transitions from transient (i.e., living) states to152

absorbing (i.e., dead) states. The fundamental matrix of the chain defined by Ũ is153

Ñ =
(
Iωq − Ũ

)−1
(22)

with dimension ωg×ωg. The (i, j) entry of Ñ is the expected number of visits to state i, conditional154

on starting in a state j, where states describe the full joint age × frailty distribution. From the155

fundamental matrix we can compute all the statistics of the cohort survival properties. We turn156

now to these analyses.157
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3 Analysis of the model158

The fundamental matrix Ñ of the joint chain contains all the information necessary to derive159

the marginal survival function s∗ (a vector of dimension ω × 1) and the corresponding marginal160

fundamental matrix N∗ (of dimension ω × ω).161

3.1 The marginal survival function162

To obtain the marginal dynamics of the cohort age distribution, first average the columns of Ñ over163

the initial frailty distribution. If, as in the gamma-Gompertz case, the initial frailty distribution164

has positive support only in the first age class, the result is165

s̃ = Ñ
[
e1 ⊗ π(0)

]
.

This column vector gives the average, over π(0), of the number of visits to each age-frailty state166

by an individual in the first age class.167

Next, sum the rows of the vector s̃ within each frailty class to obtain the marginal mean number168

of visits to each age class for an individual in the initial cohort. Because the underlying demographic169

model is age-classified, a transient state (i.e., an age class) can be visited at most once; hence the170

mean number of visits is the probability of visiting. Thus the vector of mean number of visits is in171

fact the marginal survivorship function s∗:172

s∗ =
(
Iω ⊗ 1T

g

)
s̃ (23)

=
(
Iω ⊗ 1T

g

)
Ñ [e1 ⊗ π(0)] (24)

3.2 The marginal fundamental matrix173

The fundamental matrix Ñ gives the number of visits to each age-frailty class. We need the174

marginal fundamental matrix N∗, which gives the expected number of visits to each age class. All175

the statistics of longevity can be obtained from this matrix (e.g., ?????). To obtain N∗, note that176

the vector s∗ is the first column of N∗, and that the full matrix is177

N∗ =



s∗1 0 0 · · · 0

s∗2
s∗2
s∗2

0 · · · 0

s∗3
s∗3
s∗2

s∗3
s∗3
· · · 0

s∗4
s∗4
s∗2

s∗4
s∗3
· · · 0

...
...

... · · · 1


(25)

(?, Eq. 10.5.4)3 This can be written178

N∗ =
[
s∗1T

s diag (s∗)−1
]
◦Y (26)

where Y is a lower triangular matrix with ones on and below the diagonal and zeros elsewhere.179

3It seems appropriate to note that Keyfitz presented this result in the first edition of the book in 1977.
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3.3 Longevity, variation, and disparity180

When longevity statistics are calculated from N∗, they give the marginal results for the cohort181

starting with the initial frailty distribution π(0). These include the following.182

1. The moments of the number of visits to each of the transient states. Because transient states183

(age classes) in an age-classified model can be visited no more than once, these moments may184

be less interesting in the G-G model than in models with more complicated stage structure.185

Letting N∗
i be the matrix of the ith moments of the number of visits, N∗

1 is given by (25),186

and the higher moments include187

N∗
2 =

(
2N∗

dg − I
)
N∗

1 (27)

N∗
3 =

[
6
(
N∗

dg

)2 − 6N∗
dg + I

]
N∗

1 (28)

N∗
4 =

[
24
(
N∗

dg

)3 − 36
(
N∗

dg

)2
+ 14N∗

dg − I
]
N∗

1. (29)

where N∗
dg is a diagonal matrix with the diagonal elements of N∗

1 on the diagonal and zeros188

elsewhere (e.g., ???); for a mathematical source see ?.189

2. The moments and statistics of longevity. Longevity is equivalent to the time until absorbtion190

in one of the absorbing states. The vector η1 of mean longevities (i.e., life expectancies) of191

each age class is obtained from the column sums of N∗, and subsequent moments as follows,192

where ηi is the vector of ith moments of longevity:193

ηT
1 = 1T

ωN
∗ (30)

ηT
2 = ηT

1 (2N∗ − I) (31)

ηT
3 = ηT

1

[
6 (N∗)2 − 6N∗ + I

]
(32)

ηT
4 = ηT

1

[
24 (N∗)3 − 36 (N∗)2 + 14N∗ − I

]
. (33)

(???). These moments provide a complete set of longevity statistics, including the variance,194

standard deviation, coefficient of variation, and skewness of longevity:195

V (η)T = η2 − η1 ◦ η1 (34)

SD(η) =
√
V (η) (35)

CV (η) = diag (η1)SD (η) (36)

Sk (η) = diag (V (η))−3/2 [η3 − 3η1 ◦ η2 + 2η1 ◦ η1 ◦ η1

]
(37)

3. The joint and marginal distributions of age and stage at death. Becasue the matrix G-G model196

is an age-stage structured model, the joint and marginal distributions of age and frailty class197

at death are obtained using the mortality matrix M̃ in (21).198

If M̃ is created by defining absorbing states corresponding to the age and frailty class at199

death, then M̃ = diag
(
1T
ωg − 1T

ωgŨ
)

. Then column j of the matrix200

B̃ = M̃Ñ (38)

gives the joint distribution of age and frailty at death, conditional on reaching the age-frailty201

combination in column j (?).202
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Averaging the first g columns of B̃ over the initial frailty distribution gives a vector φ̃ con-203

taining the distribution of age and frailty at death of a cohort with initial frailty distribution204

π(0):205

φ̃ = B̃
[
e1 ⊗ π(0)

]
(39)

The marginal distributions of age and of frailty at death can be shown to be206

φ∗
age =

(
Iω ⊗ 1T

g

)
φ̃ (40)

φ∗
frailty = (1T

ω ⊗ Ig) φ̃ (41)

3.4 Projecting the distributions of frailty and age207

The population vector giving the abundance by age and frailty class is projected by the matrix Ũ208

in (20):209

ñ(t+ 1) = Ũñ(t) (42)

If, as in the G-G model, the initial cohort has support only in the first age class, with distribution210

π(0), then ñ(0) = (eT
1 ⊗ Ig)π(0).211

Let p̃(t) be the vector giving the proportional age-frailty distribution at time t. It is projected212

by213

p̃(t+ 1) =
Ũp̃(t)

‖Ũp̃(t)‖
, (43)

with p̃(0) = ñ(0)/‖ñ(0)‖.214

The marginal age vector and the marginal proportional age distribution vector are obtained by215

summing over fraility classes within age classes, as in (40) for the death distribution. They are216

given by217

n∗(t) =
(
Iω ⊗ 1T

g

) ˜n(t) (44)

p∗(t) =
(
Iω ⊗ 1T

g

) ˜p(t) (45)

The marginal fraility vector and the marginal proportional frailty distribution are obtained by218

summing ñ and p̃ over age within each frailty class, as in (41) for the death distribution:219

m∗(t) = (1T
ω ⊗ Ig) ñ(t) (46)

π(t) = (1T
ω ⊗ Ig) p̃(t) (47)

From the marginal distribution π(t) of frailty, all the statistics, particularly the mean and variance,220

of frailty can be calculated, to quantify the effects of selection as a function of age.221

4 An example: Swedish females222

An example of the calculations is provided by using the G-G parameters a, b, and k estimated by ?223

from period mortality data on Swedish females from 1891 to 2010. I used these parameters, for the224

arbitrarily selected year 1950, to create the matrices u and D (â = 0.0340, b̂ = 0.1200, k̂ = 8.2300).225

Calculations were carried out with ω = 150 age classes and g = 100 logarithmically spaced frailty226

classes. The results are shown in a series of figures. The marginal mortality rate µ ∗ (t) is shown227

in Figure 1. That rate increases nearly exponentially until about age 75, at which point the effects228

of selection become apparent and the increase decelerates; mortality converges to an asymptote at229

about age 100.230

9



4.1 Statistics of longevity231

The mean, standard deviation, coefficient of variation, and skewness of longevity, computed from N∗
232

using (34)–(37), are shown in Figure 2. The remaining life expectancy and its standard deviation233

both decrease with age, but the relative variation, as measured by the coefficient of variation,234

increases up to about age 90 and then decreases slightly. The distribution of longevity goes from235

negative to positive skewness with increasing age.236

4.2 Dynamics of frailty237

The selection against more frail individuals is seen in the dynamics of the distribution of frailty π(t)238

(Figure 3). Both the mean and the standard deviation of frailty decrease with age, with the decline239

becoming visually evident after about age 50. The CV of frailty is known to remain constant with240

age in the G-G model. In the matrix calculation, it is very nearly constant, increasing slightly at241

about age 75.242

4.3 Effects of the G-G parameters243

The matrix formulation makes it easy to explore the effects of the G-G parameters on the statistics244

of longevity. Figures 5–7 show the effects of varying a, b, and the variance, 1/k, of the frailty245

distribution over several orders of magnitude around the values for Swedish females in 1950.246

Life expectancy declines with increases in a; roughly speaking, a 10-fold increase in a reduces247

life expectancy at birth by about 10 years (Figure 5). The standard deviation of longevity also248

declines with increasing a, more dramatically at older ages. Together, these changes i lead to a249

coefficient of variation that increases with a. The skewness of the distribution of longevity also250

increases with a. When measured at birth, it is negative, but by age 60 skewness changes from251

negative to positive as a increases.252

Increases in b also reduce life expectancy (Figure 6). The standard deviation of longevity peaks253

at an intermediate value of b, and declines sharply at higher or lower values. The coefficient of254

variation of longevity increases with b until at older ages it eventually declines. At very high255

values of b the expectation and standard deviation of longevity at older ages become zero and the256

coefficient of variation is undefined.257

The effects of changes in the variance σ2 = 1/k of the initial frailty distribution π(0) are shown258

in Figure 7. Expected longevity is relatively insensitive to the σ2 until it becomes much higher than259

that observed for Swedish females, at which point the mean, variance, and coefficient of variation260

of longevity all begin to increase with σ2. The skewness of longevity increases to a peak (at values261

much higher than those observed), and then declines again at extremely high values of σ2.262

4.4 Numerical reliability263

Based on his results using the Gaussian hypergeometric function (11), ? reports a life expectancy of264

77.29 years for Swedish females in 1950. Evaluating his formula with the Gaussian hypergeometric265

function as implemented in Matlab or in Wolfram Alpha gives a result of 76.22 years. The266

matrix calculation yields 77.23 years or, when adjusted by 0.5 years to correspond to a trapezoidal267

integration of the survival function, 76.73 years. The differences among the various implementations268

of the calculation are small (Table 1).269

Because the matrix calculation is a discrete model, the results are influenced by the number270

of frailty classes g and the number of age classes ω included in the model. The number of frailty271

classes determines how closely π(0) can approximate a gamma distribution, and the ability of π(t)272
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to capture the distribution of frailty at late ages when selection has been operating for a long time.273

The number of age classes determines the extent to which the longevity statistics are influenced274

by the death of all remaining individuals at age ω, which is not part of the G-G model, but must275

appear in any finite state approximation.276

Figure 4 shows the effect of choices of ω and of g on the expectation and the standard deviation277

of longevity. For these parameters, choosing ω > 100 and g > 40 provides reliable estimates of278

both the mean and the variation of longevity for this data set. Too small a value of ω reduces both279

the mean and the standard deviation, because the survival curve is truncated at age ω.280

5 Generalizations and extensions of the model281

The calculations of N∗, s∗, and all the quantities derived from them depend only on the vec-282

permutation model structure (20). As a result, the analysis can be extended from the G-G model to283

other models for baseline mortality, other models for the effects of frailty, other fraility distributions,284

and other models for the dynamics of frailty. I describe some of these extensions here.285

5.1 Models for baseline mortality286

The baseline mortality schedule µ0 is used to create the frailty-specific mortality schedules µi in287

equation (13). These schedules are used to create the matrices Ui that appear in (15). The Gom-288

pertz model is only one possible choice of a baseline schedule. Here, I examine some alternatives;289

results, in the same format as Figures 2, 3, and 5–7 are collected in Appendix A.290

For example, the Gompertz-Makeham model291

µ(x) = aebx + c, (48)

is obtained by adding an age-independent morality hazard c to the Gompertz model. The gamma-292

Makeham model results from incorporating a porportional frailty effect293

µi = zi

(
aebi + c

)
(49)

where the zi have a gamma distribution at age 0.294

Simply modifying µ0 in equation (13) transforms the G-G model to the gamma-Makeham295

model, with296

µ0 =

 e0b

...

e(ω−1)b

+ c

 1
...
1

 (50)

All analyses of the gamma-Makeham model then follow from Ñ, computed from µ(z), just as with297

the G-G model.298

? estimated the parameters in the gamma-Makeham model as part of an analysis of the effects299

of education on the mortality of male and female cohorts in Turin, Italy, from 1971 to 2007. I300

analyzed the data for the baseline cohort of women, for which AIC calculations indicated that301

the gamma-Makeham model was much more well-supported by the data than the G-G model (?).302

Figure A.1 shows the expectation, standard deviation, CV, and skewness of remaining longevity303

as a function of age. The patterns are qualitatively similar to the gamma-Gompertz results for304

Swedish females (Figure 2). Selection reduces the mean and the standard deviation of frailty as age305

approaches 100, and the log of the marginal mortality rate increases with age in a sigmoid fashion306

(Figure A.2).307
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There is no reason to stop at the gamma-Makeham model. ? and ? have added gamma-308

distributed frailty to the Siler model for mortality309

µ0(x) = ea1−b1x + ea2+b2x + ea3 (51)

where exp(a1−b1x) is a declining force of infant mortality, exp(a2+b2x) is an increasing force of old310

age mortality, and exp(a3) is a constant force of background mortality. An analysis of the gamma-311

Siler model requires only substituting this expression for µ0 for the gamma-Gompertz mortality312

function in (12).313

? estimated parameters for a gamma-Siler model for cohorts of Swedish females born from314

1875–1916. Here I show results for the year 1900. The expectation, standard deviation, CV, and315

skewness of remaining longevity are shown as functions of age in Figure A.3. The patterns differ316

from those of the G-G and gamma-Makeham models mainly in that they show the effects of the317

infant mortality term. This effect is also apparent in the marginal mortality function (Figure A.4c)318

which declines sharply after birth, remains low, and then increases, eventually reaching a plateau319

at older ages.320

These examples use parametric functions for the baseline mortality schedule, but they can easily321

be extended to semiparametric or nonparametric estimates. The estimated mortality function322

simply needs to be incorporated into the matrices Ui.323

5.2 Models for the effects of frailty324

In the G-G model, frailty affects mortality as a proportional hazard. Other models for the effects of325

frailty can be incorporated into the construction of the matrices Ui, by replacing the proportional326

hazard formulation in (13) with an expression appropriate to the frailty effects.327

For example, ? briefly considered a model with accelerated aging, in which328

µ(z, x) = µ0(zx) (52)

and point out that, if the baseline mortality schedule is Gompertz, then small changes in z can329

have large effects on the mortality, especially at later ages. Figure 3 of ? shows an example with330

two frailty classes.331

Accelerated failure time (AFT) models typically specify frailty in terms of its effect on the332

survival function, so that333

s(z, x) = s(zx) (53)

which implies that334

µ(z, x) = zµ(zx). (54)

To incorporate such a model in the matrix calculations require only an appropriate change in the335

the expression (13) for the mortality rate of each frailty class.336

5.3 Models for the distribution of frailty337

The gamma distribution is attractive as a distribution of frailty for its mathematical properties,338

and theoretical results suggest that it is likely to underlie mortality trajectories that reach a plateau339

at old ages (?). However, any initial distribution π(0) can be incorporated in the calculation of the340

marginal survival s∗ in (24), and the dynamics of the frailty distribution generated by (47). This341

includes other parametric distributions as well as specification of discrete frailty classes (e.g., ?).342
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5.4 Models for the dynamics of frailty343

In the G-G model, frailty is a fixed property of an individual. However, individual heterogeneity344

may be dynamic, increasing (debilitation) or decreasing (recuperation) over time due to stress,345

disease, etc. The matrix model readily incorporates any finite-state Markov chain as a model for346

dynamic heterogeneity, by properly specifying the matrices Di, for i = 1, . . . , ω.347

For example, ? considered a model with two frailty states, z1 and z2. Individuals begin life with348

frailty z1 with mortality schedule µ1(x), and change from state one to state two at a rate λ(x). The349

second frailty state might represent a morbid event such as a heart attack. This model generalizes350

to a model considered by ? and ? with a countably infinite number of frailty classes. The mortality351

rate is µi = µ0 + ziµ, and frailty increases at the rate λ0 + ziλ. The debilitation process leads to352

a stochastic increase in individual frailty over time. The resulting sigmoid trajectory of marginal353

mortality cannot be distinguished for that produced by the G-G model with an additive Makeham354

term (??).355

Every individual need not begin with the same frailty. ? considered a model in which the356

cohort starts with some intial frailty distribution, and then frailty of each individual proceeds in357

accordance with the LeBras model. ? modelled the dynamics of frailty as a diffusion process, in358

which individuals may, with equal probability, become more frail or recuperate to a lower frailty359

level.360

To incorporate dynamic heterogeneity into the matrix model, consider a hypothetical model361

where individual frailty changes as a diffusion process with reflecting boundaries. Frailty is as362

likely to increase as to decrease, but it cannot decline below 0 or increase above some maximum363

limit. If the changes in frailty follow a diffusion process, then the discrete time transition matrix364

D can be written365

D = ekQ (55)

where Q is the intensity matrix of a continuous-time, nearest-neighbor random walk with366

qij =


1 j = i− 1
−2 j = i

1 j = i+ 1
0 otherwise

(56)

except that q1,1 = qg,g = −1. The coefficient k adjusts the speed of diffusion (e.g., ?). Unlike the367

LeBras model, this diffusion model does not change the rate of indisposition or recuperation as the368

frailty changes, but such dynamics can be easily incorporated.369

Adding diffusion to the G-G model for Swedish females gives the results shown in Figure 10.370

Both life expectancy and the standard deviation of longevity are maximized at intermediate values371

of diffusion. There is a balance between creation of diversity by diffusion, and removal of diversity372

by selection (a balance familiar from mutation-selection calculations in population genetics). At373

sufficiently high rates of diffusion, individual move among frailty levels so rapidly that they cannot374

avoid exposure to high levels of frailty (this reduces life expectancy), and because all individuals375

experience this random movement the variance in frailty is also reduced.376

The interaction between the creation of heterogeneity by diffusion and its elimination by se-377

lection is shown in Figure 11. The standard deviation of frailty increases from its value at birth,378

under the impact of diffusion. Eventually, mortality increases enough to reduce the variation by379

selection. At very high levels of diffusion, the heterogeneity is almost totally determined by the380

diffusion. At low levels of diffusion, the increase in heterogeneity is smaller, and its reduction due381

to selection more prominent.382
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5.5 Some animal mortality patterns383

In an exploration of the effects of heterogeneity on the distribution of age at death, ? estimated384

G-G parameters from data on laboratory populations of five species of invertebrate animals: a385

bean beetle (Callosobruchus maculatus), the medfly (Ceratitis capitata), the fruit fly Drosophila386

melanogaster, the nematode Caenorhabditis elegans, and a parasitoid wasp (Diachasimimorpha387

longicaudata.) Because the estimated G-G parameters for these species do not appear in the388

original paper, they are listed here in Table B.1.389

These species exhibit considerably greater variance in frailty than do the human examples390

considered so far, ranging from 0.90 to 2.18. In contrast, estimates of the initial variance for391

Swedish females from 1891 to 2010 range from 0.10 to 0.14 (?). Figure 9 shows the marginal392

mortality rate for each species as a function of age, with age and mortality rate both standardized393

relative to life expectancy at birth. The marginal mortality rates reaches a plateau at an age of394

about 1 life expectancy, at a standardized mortality rate of 0.1 to 0.5. Further interspecific analyses395

would be interesting.396

6 Heterogeneous frailty vs. individual stochasticity397

Inter-individual variance in longevity is often interpreted as evidence of heterogeneity among in-398

dividuals in their mortality risks. This interpretation is incorrect, because variance in longevity399

also arises from individual stochasticity ; the random variation in the fates of indivduals subject to400

the same risks as they move through the life cycle (???). The only way to partition variance into401

components due to heterogeneity and to individual stochasticity is with a model that contains both402

sources; the matrix formulation here does so.403

Thus, the variance in longevity shown in Figure 8 contains both components. As the variance404

in the initial frailty distribution π(0) approaches zero, the remaining variance in longevity is due405

to individual stochasticity. It is apparent from Figure 8 that the observed variance in longevity is406

only slightly greater than that accounted for by individual stochasticity.407

This is not always the case: Table 2 compares the decomposition of the variance for Swedish408

females (the G-G, gamma-Makeham, and gamma-Siler mdoels) with that for the animal species409

from ?. In the human populations, heterogeneity accounts for only 2–7% of the variance in longevity.410

The greater variance in frailty in the experimental animal data makes a much higher contribution411

to the variance in longevity, from 46% to 83%.412

It is important to remember that the relative contributions of individual stochasticity and413

individual heterogeneity depend not only on the variance in frailty, but also on the mortality414

schedule, and deserve further empirical investigation.415

7 Conclusions416

The gamma-Gompertz and related frailty models provide a powerful way to analyze the mortality417

of heterogeneous cohorts (?). They do so by capturing the interacting effects of changing mortal-418

ity with age and selection among individuals with different frailty states. Frailty models can be419

characterized by their components:420

1. a baseline mortality rate,421

2. a mode of action by which frailty affects the baseline mortality rate,422

3. the dynamics of individual frailty over time, and423
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4. an initial distribution of frailty.424

In the matrix G-G model, the baseline mortality rate follows the Gompertz model (1) and frailty425

affects the baseline as a proportional hazard, as in (13). The frailty dynamics are fixed, so that426

D in (15) is an identity matrix, and the initial distribution π(0) is a gamma distribution with a427

mean of 1. Many other models can be created by changing one or more of these components. The428

result, however, is always a model classifying individuals by two criteria: age and frailty. The vec-429

permutation matrix model (20) methodologically keeps track of both criteria, and makes it easy430

to calculate the properties of the joint age×frailty distribution, the marginal age-specific mortality431

and survival functions, and a complete set of statistics of longevity.432

Table 3 gives a step-by-step protocol for the analysis of the G-G model. Other choices of433

baseline mortality rate (e.g., the Makeham model or the Siler model considered in Section 5.1),434

the action of frailty (e.g., accelerated failure time models), the dynamics of fraility (e.g., the frailty435

diffusion models discussed in Section 5.4), or the initial distribution of frailty require only simple436

modifications of the appropriate steps in Table 3.437

The effects of model parameters on the statistics of longevity, shown in Figures 5, 6, 7, and438

8, reveal interesting patterns. In the G-G model, life expectancy declines with increasing values439

of a and b, which is not unexpected. It increases with increasing variance in initial frailty, which440

is less intuitively easy to explain. The effects on variance, CV, and skewness of longevity are441

more diverse. The standard deviation of longevity declines with increases in a, is maximized at442

intermediate values of b, and increases with initial variance in frailty. The skewness of longevity443

increases with increases in a and b, and increases and eventually declines again with increases in444

initial variance in frailty.445

Variance in longevity is sometimes interpreted as evidence of inequality among individuals446

within the population, but this is not necessarily true. The variance calculated from a specified447

mortality schedule assumes that all individuals experience the rates defined by that schedule; hence448

differences among individuals reflects the stochastic outcome of those rates. Frailty models, how-449

ever, include heterogeneity among individuals, so manipulation of the variance of the initial frailty450

distribution π(0) makes it possible to decompose variation in longevity into contributions from451

individual stochasticity and heterogeneous frailty (Figure 8. In several human mortality studies452

based on the gamma-Gompertz, gamma-Makeham, and gamma-Siler models, the contribution of453

heterogeneous frailty to the variance in longevity is small (2% – 7%). In a set of laboratory studies454

of invertebrate animals, it is much higher (50%–80%; see Table 2). More analyses of such patterns455

will be presented elsewhere.456

Finally, I note that the results here provide connections to several other problems related to457

frailty. First, there is no need to limit the analysis to age-classified models. The effects of frailty458

on stage-classified (e.g., educational status, health status) or multi-stage models can be analyzed459

simply by using the appropriate formulation in U. The formulation as an absorbing Markov chain460

can be used to compute likelihood functions from data on individuals. This is used by animal461

ecologists working with mark-recapture data (e.g., ??) and implemented in some software packages462

(??). Because frailty is inherently unobserved, issues of identifiability arise, which can also be463

addressed using the Markov chain formulation (?).464

Finally, it is a significant advantage that the matrix model is directly amenable to sensitivity465

analysis using matrix calculus methods (e.g., ???????) These methods provide the sensitivity of466

the moments of longevity, the joint distribution of age and stage at death, and the survivorship467

and mortality functions to changes in any of the parameters of the model.468
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9 Tables475

Table 1: Comparison of life expectancy results from ?, from this paper, and from Missov’s theorem im-
plemented in Matlab and calculated using Wolfram Alpha. The adjusted value from this paper has had
0.5 years subtracted to make the result directly comparable to a trapezoidal computation of the integral of
S∗(t). For the matrix calculations, ω = 150 and g = 100.

Source Expected longevity

Missov (2013) 77.29
Missov via Matlab 76.22
Missov via Wolfram 76.22

Matrix method 77.23
Matrix method (adjusted) 76.73
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Table 2: Decomposition of the variance in longevity for human populations and laboratory populations of
invertebrate species. The variance σ2 in initial frailty, the variance V (η) in longevity and the components
of V (η) due to individual stochasticity and to heterogeneous frailty, and the proportion of the variance due
to heterogeneity. Species are listed in order of increasing initial variance in fraility. Data from ?.

Species σ2 V (η) Stochasticity Heterogeneity Proportion

Sweden 1950 G-G 0.122 122.9 114.1 8.72 0.071
Turin G-M 0.096 351.6 347.3 104.3 0.012
Sweden 1900 G-S 0.120 1091.7 1074.1 17.60 0.016

nematode 0.90 18.0 9.7 8.3 0.46
fruit fly 0.94 88.1 46.1 42.0 0.48
beetle 1.31 12.7 5.2 7.5 0.59
medfly 1.34 81.8 29.5 52.3 0.64
wasp 2.18 30.3 5.1 25.2 0.83
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Table 3: A protocol for analysis of the gamma-Gompertz model.

1. Specify the Gompertz parameters a and b, and the gamma distribution paramater
k. Choose values for the numbers of age classes ω and the number of frailty classes
g.

2. Generate the baseline mortality vector µ0 from (12)

3. Specify the frailty classes zi, i = 1, . . . , g, and the discrete approximation to the
gamma distribution π. Logarithmically-spaced frailty classes are recommended.

4. Create the matrices Ui, for i = 1, . . . , g, as in equation (14).

5. Create the block diagonal matrices U and D according to (15).

6. Create the joint transition matrix Ũ according to (20).

7. Analyze the model

(a) Compute the fundamental matrix Ñ from (22).

(b) Compute the marginal survival function s∗ from (24).

(c) Generate the marginal fundamental matrix N∗ from (25).

(d) Generate life expectancy and other indices of longevity from N∗ using (26)–
(37).

8. Project the dynamics of the age-railty distribution ñ(t) with (42). Obtain the
marginal age abundance vector n∗ using (44) and the marginal age distribution
vector p∗ using (45).

9. Obtain the marginal frailty abundance vector m∗ using (46) and the frailty distri-
bution π(t) from equation (47).

10. If desired, create the mortality matrix M̃ and generate the distributions of age and
of frailty at death from equations (39)–(41).
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Figure 1: Gamma-Gompertz mortality rate µ(t) as a function of age, t. Black lines show the age-specific
mortality rates for a few of the frailty classes in the model. The blue line shows the marginal hazard µ∗(t).
Parameters for Swedish females as reported in ? for the year 1950.
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Figure 2: Statistics of longevity for the gamma-Gompertz model, as a function of age, using parameters
reported in ? for the year 1950. (a) Life expectancy. (b) Standard deviation of longevity. (c) Coefficient of
variation of longevity. (d) Skewness of longevity. [add vertical line at age 110]
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Figure 3: Changes due to selection in the distribution of frailty, and in the mean, CV, and skewness of that
distribution, over the life of a cohort. Parameters for Swedish females, as reported in ? for the year 1950.
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Figure 4: Effect of the number of age classes ( ω) and the number of frailty classes (g) on the estimates
of life expectancy and the standard deviation of longevity, at ages 0 and 50. (a) and (b) show the effects of
age classes, with g = 100. (c) and (d) show the effect of the number of frailty classes, with ω = 150.
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Figure 5: Statistics of longevity for the gamma-Gompertz model, using parameters reported in ? for
Swedish females in 1950, as a function of the Gompertz parameter a.
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Figure 6: Statistics of longevity for the gamma-Gompertz model, using parameters reported in ? for
Swedish females in 1950, as a function of the Gompertz parameter b, for ages 0, 30, and 60 years.
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Figure 7: Statistics of longevity at ages 0, 30, and 60 years for the gamma-Gompertz model as a function
of the variance in the gamma distribution of frailty (equal to 1/k). Parameters as reported in ? for Swedish
females in 1950. The vertical lines indicate the observed value of variance.
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(b) Gamma-Makeham model
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(c) Gamma-Siler model

Figure 8: The variance of longevity, at ages 0 and 60, as a function of the variance of the initial frailty
distribution. (a) The gamma-Gompertz model, calculated from parameters reported by ? for Swedish
females in 1950. (b) The gamma-Makeham model, calculated from parameters reported by ? for a cohort
model of the female population of Turin. (b) The gamma-Siler model, calculated from parameters reported
by ? for Swedish females born in 1900. The vertical lines indicates the observed values of initial variance in
frailty.
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Figure 9: The marginal mortality rate µ∗(t) as a function of standardized age t, for five species of inverte-
brate animals, based on G-G parameters estimated by ?. The age abcissa is scaled by dividing age by the
life expectancy at birth. The mortality rate is standardized by multiplying by the same life expectancy.
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(b) Standard deviation of longevity

Figure 10: The expectation and the standard deviation of longevity at birth for the gamma-Gompertz
model with added diffusion of frailty. Parameters as reported in ? for Swedish females in 1950.
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Figure 11: The standard deviation of frailty in a gamma-Gompertz model with diffusion of frailty, at low,
medium, and high values of diffusion. Parameters as reported in ? for Swedish females in 1950.
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A Gamma-Makeham and gamma-Siler models477

This appendix collects results on the statistics of longevity and the dynamics of frailty for the478

gamma-Makeham model and the gamma-Siler model, in the same format used for results from the479

G-G model in Figures 2 and 3.480

A.1 Gamma-Makeham481
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(b) Standard deviation of longevity
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(c) CV of longevity
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(d) Skewness of longevity

Figure A.1: Statistics of longevity for the gamma-Makeham model, as a function of age. Calculated from
parameters reported by ? for a cohort model for the female population of Turin.
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(a) Mean frailty
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(b) Standard deviation of frailty

0 50 100 150
10

−3

10
−2

10
−1

10
0

10
1

Age

M
a
rg

in
a
l 
m

o
rt

a
lit

y
 r

a
te

(c) Marginal mortality

Figure A.2: Statistics of frailty, and marginal mortality rate µ∗, for the gamma-Makeham model, as a
function of age. Calculated from parameters reported by ? for a cohort model for the female population of
Turin.
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A.2 Gamma-Siler482
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Figure A.3: Statistics of longevity for the gamma-Siler model, as a function of age. Calculated from
parameters reported by ? for Swedish females born in 1900.
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(a) Mean frailty
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(c) Marginal mortality

Figure A.4: Statistics of frailty, and marginal mortality rate µ∗, for the gamma-Siler model, as a function
of age. Calculated from parameters reported by ? for Swedish females born in 1900.
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B Parameters for animal species483

Table B.1: Gamma-Gompertz parameters for the invertebrate animal species analyzed by ?; data provided
by Horiuchi (personal communication).

Species a b k

Medfly 0.0027 0.2168 0.7530
Nematode 6.9970× 10−4 0.4059 1.1264
Wasp 0.0278 0.4575 0.4640
Drosophila 6.0558× 10−5 0.1878 1.0796
Beetle 1.3760× 10−4 0.5671 0.7721
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